paddle_api.cc 11.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_api.h"
16 17 18

#include <utility>

19
#include "lite/core/context.h"
20
#include "lite/core/device_info.h"
S
sangoly 已提交
21
#include "lite/core/target_wrapper.h"
Y
Yan Chunwei 已提交
22 23
#include "lite/core/tensor.h"

S
sangoly 已提交
24 25 26
#ifdef LITE_WITH_CUDA
#include "lite/backends/cuda/target_wrapper.h"
#endif
27 28 29
#ifdef LITE_WITH_XPU
#include "lite/backends/xpu/target_wrapper.h"
#endif
S
sangoly 已提交
30

31 32 33 34
#ifdef LITE_WITH_MLU
#include "lite/backends/mlu/target_wrapper.h"
#endif

35 36 37 38
#ifdef LITE_WITH_OPENCL
#include "lite/backends/opencl/cl_runtime.h"
#endif

Y
Yan Chunwei 已提交
39 40 41
namespace paddle {
namespace lite_api {

42 43 44 45 46 47 48 49 50
bool IsOpenCLBackendValid() {
  bool opencl_valid = false;
#ifdef LITE_WITH_OPENCL
  opencl_valid = paddle::lite::CLRuntime::Global()->OpenCLAvaliableForDevice();
#endif
  LOG(INFO) << "opencl_valid:" << opencl_valid;
  return opencl_valid;
}

Y
Yan Chunwei 已提交
51 52 53 54 55 56 57 58 59 60 61 62 63 64
Tensor::Tensor(void *raw) : raw_tensor_(raw) {}

// TODO(Superjomn) refine this by using another `const void* const_raw`;
Tensor::Tensor(const void *raw) { raw_tensor_ = const_cast<void *>(raw); }

lite::Tensor *tensor(void *x) { return static_cast<lite::Tensor *>(x); }
const lite::Tensor *ctensor(void *x) {
  return static_cast<const lite::Tensor *>(x);
}

void Tensor::Resize(const shape_t &shape) {
  tensor(raw_tensor_)->Resize(shape);
}

65
// Tensor::data
Y
Yan Chunwei 已提交
66 67 68 69 70 71 72 73
template <>
const float *Tensor::data() const {
  return ctensor(raw_tensor_)->data<float>();
}
template <>
const int8_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int8_t>();
}
74
template <>
75 76 77 78
const uint8_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<uint8_t>();
}
template <>
79 80 81
const int64_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int64_t>();
}
S
sangoly 已提交
82 83 84 85 86
template <>
const int32_t *Tensor::data() const {
  return ctensor(raw_tensor_)->data<int32_t>();
}

87
// Tensor::mutable_data
88
template <>
89 90
int *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int>(type);
91
}
Y
Yan Chunwei 已提交
92
template <>
93 94
float *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<float>(type);
Y
Yan Chunwei 已提交
95 96
}
template <>
97 98
int8_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int8_t>(type);
Y
Yan Chunwei 已提交
99
}
100
template <>
101 102 103 104
uint8_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<uint8_t>(type);
}
template <>
105 106 107
int64_t *Tensor::mutable_data(TargetType type) const {
  return tensor(raw_tensor_)->mutable_data<int64_t>(type);
}
Y
Yan Chunwei 已提交
108

S
sangoly 已提交
109 110 111 112 113 114 115 116 117 118 119 120 121 122
template <typename T, TargetType type>
void Tensor::CopyFromCpu(const T *src_data) {
  T *data = tensor(raw_tensor_)->mutable_data<T>(type);
  int64_t num = tensor(raw_tensor_)->numel();
  CHECK(num > 0) << "You should call Resize interface first";
  if (type == TargetType::kHost || type == TargetType::kARM) {
    lite::TargetWrapperHost::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoH);
  } else if (type == TargetType::kCUDA) {
#ifdef LITE_WITH_CUDA
    lite::TargetWrapperCuda::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoD);
#else
    LOG(FATAL) << "Please compile the lib with CUDA.";
123 124 125 126 127 128 129
#endif
  } else if (type == TargetType::kMLU) {
#ifdef LITE_WITH_MLU
    lite::TargetWrapperMlu::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoD);
#else
    LOG(FATAL) << "Please compile the lib with MLU.";
S
sangoly 已提交
130 131 132 133 134 135
#endif
  } else {
    LOG(FATAL) << "The CopyFromCpu interface just support kHost, kARM, kCUDA";
  }
}
template <typename T>
136
void Tensor::CopyToCpu(T *data) const {
S
sangoly 已提交
137 138 139 140 141 142 143 144 145 146 147 148 149
  const T *src_data = tensor(raw_tensor_)->data<T>();
  int64_t num = tensor(raw_tensor_)->numel();
  CHECK(num > 0) << "You should call Resize interface first";
  auto type = tensor(raw_tensor_)->target();
  if (type == TargetType::kHost || type == TargetType::kARM) {
    lite::TargetWrapperHost::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::HtoH);
  } else if (type == TargetType::kCUDA) {
#ifdef LITE_WITH_CUDA
    lite::TargetWrapperCuda::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::DtoH);
#else
    LOG(FATAL) << "Please compile the lib with CUDA.";
150 151 152 153 154 155 156
#endif
  } else if (type == TargetType::kMLU) {
#ifdef LITE_WITH_MLU
    lite::TargetWrapperMlu::MemcpySync(
        data, src_data, num * sizeof(T), lite::IoDirection::DtoH);
#else
    LOG(FATAL) << "Please compile the lib with MLU.";
S
sangoly 已提交
157 158 159 160 161 162 163 164 165
#endif
  } else {
    LOG(FATAL) << "The CopyToCpu interface just support kHost, kARM, kCUDA";
  }
}

template void Tensor::CopyFromCpu<int, TargetType::kHost>(const int *);
template void Tensor::CopyFromCpu<float, TargetType::kHost>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kHost>(const int8_t *);
166
template void Tensor::CopyFromCpu<uint8_t, TargetType::kHost>(const uint8_t *);
S
sangoly 已提交
167 168 169 170

template void Tensor::CopyFromCpu<int, TargetType::kARM>(const int *);
template void Tensor::CopyFromCpu<float, TargetType::kARM>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kARM>(const int8_t *);
171 172
template void Tensor::CopyFromCpu<uint8_t, TargetType::kARM>(const uint8_t *);

S
sangoly 已提交
173
template void Tensor::CopyFromCpu<int, TargetType::kCUDA>(const int *);
174
template void Tensor::CopyFromCpu<int64_t, TargetType::kCUDA>(const int64_t *);
S
sangoly 已提交
175 176 177
template void Tensor::CopyFromCpu<float, TargetType::kCUDA>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kCUDA>(const int8_t *);

178 179 180 181 182
template void Tensor::CopyFromCpu<int, TargetType::kMLU>(const int *);
template void Tensor::CopyFromCpu<int64_t, TargetType::kMLU>(const int64_t *);
template void Tensor::CopyFromCpu<float, TargetType::kMLU>(const float *);
template void Tensor::CopyFromCpu<int8_t, TargetType::kMLU>(const int8_t *);

183 184
template void Tensor::CopyToCpu(float *) const;
template void Tensor::CopyToCpu(int *) const;
185 186
template void Tensor::CopyToCpu(int8_t *) const;
template void Tensor::CopyToCpu(uint8_t *) const;
S
sangoly 已提交
187

Y
Yan Chunwei 已提交
188 189 190 191
shape_t Tensor::shape() const {
  return ctensor(raw_tensor_)->dims().Vectorize();
}

S
sangoly 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207
TargetType Tensor::target() const {
  auto type = ctensor(raw_tensor_)->target();
  if (type == TargetType::kUnk) {
    CHECK(false) << "This tensor was not initialized.";
  }
  return type;
}

PrecisionType Tensor::precision() const {
  auto precision = ctensor(raw_tensor_)->precision();
  if (precision == PrecisionType::kUnk) {
    CHECK(false) << "This tensor was not initialized.";
  }
  return precision;
}

Y
Yan Chunwei 已提交
208 209 210 211
lod_t Tensor::lod() const { return ctensor(raw_tensor_)->lod(); }

void Tensor::SetLoD(const lod_t &lod) { tensor(raw_tensor_)->set_lod(lod); }

212 213 214 215 216 217 218 219 220 221 222 223 224 225
std::unique_ptr<Tensor> PaddlePredictor::GetMutableTensor(
    const std::string &name) {
  LOG(FATAL)
      << "The GetMutableTensor API is only supported by CxxConfig predictor.";
  return nullptr;
}

std::vector<std::string> PaddlePredictor::GetParamNames() {
  std::vector<std::string> null_result = {};
  LOG(FATAL)
      << "The GetParamNames API is only supported by CxxConfig predictor.";
  return null_result;
}

Y
Yan Chunwei 已提交
226
void PaddlePredictor::SaveOptimizedModel(const std::string &model_dir,
227 228
                                         LiteModelType model_type,
                                         bool record_info) {
Y
Yan Chunwei 已提交
229 230 231 232 233 234 235 236 237
  LOG(FATAL)
      << "The SaveOptimizedModel API is only supported by CxxConfig predictor.";
}

template <typename ConfigT>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(const ConfigT &) {
  return std::shared_ptr<PaddlePredictor>();
}

238 239 240 241 242 243 244 245 246
ConfigBase::ConfigBase(PowerMode mode, int threads) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Init();
  lite::DeviceInfo::Global().SetRunMode(mode, threads);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

247 248 249 250 251 252 253 254 255 256 257 258
void ConfigBase::set_opencl_tune(bool enable_tune) {
#ifdef LITE_WITH_OPENCL
  if (paddle::lite_api::IsOpenCLBackendValid()) {
    enable_opencl_tune_ = enable_tune;
    paddle::lite::CLRuntime::Global()->set_auto_tune(enable_opencl_tune_);
#ifdef LITE_WITH_OPENCL
    LOG(INFO) << "auto_tune:" << paddle::lite::CLRuntime::Global()->auto_tune();
#endif
  }
#endif
}

259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274
void ConfigBase::set_power_mode(paddle::lite_api::PowerMode mode) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode, threads_);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

void ConfigBase::set_threads(int threads) {
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Global().SetRunMode(mode_, threads);
  mode_ = lite::DeviceInfo::Global().mode();
  threads_ = lite::DeviceInfo::Global().threads();
#endif
}

275 276 277 278 279 280 281 282 283 284
#ifdef LITE_WITH_MLU
void CxxConfig::set_mlu_core_version(lite_api::MLUCoreVersion core_version) {
  mlu_core_version_ = core_version;
}
void CxxConfig::set_mlu_core_number(int core_number) {
  mlu_core_number_ = core_number;
}
void CxxConfig::set_mlu_input_layout(DataLayoutType layout) {
  mlu_input_layout_ = layout;
}
285 286
void CxxConfig::set_mlu_firstconv_param(const std::vector<float> &mean,
                                        const std::vector<float> &std) {
287 288 289 290 291 292 293 294
  mlu_first_conv_mean_ = mean;
  mlu_first_conv_std_ = std;
}
lite_api::MLUCoreVersion CxxConfig::mlu_core_version() const {
  return mlu_core_version_;
}
int CxxConfig::mlu_core_number() const { return mlu_core_number_; }
DataLayoutType CxxConfig::mlu_input_layout() const { return mlu_input_layout_; }
295 296 297
std::pair<std::vector<float>, std::vector<float>>
CxxConfig::mlu_firstconv_param() const {
  return std::make_pair(mlu_first_conv_mean_, mlu_first_conv_std_);
298 299 300
}
#endif

301 302
void CxxConfig::set_xpu_workspace_l3_size_per_thread(int l3_size) {
#ifdef LITE_WITH_XPU
303
  lite::TargetWrapperXPU::workspace_l3_size_per_thread = l3_size;
304 305 306 307 308 309 310 311 312
#else
  LOG(WARNING) << "The invoking of the function "
                  "'set_xpu_workspace_l3_size_per_thread' is ignored, please "
                  "rebuild it with LITE_WITH_XPU=ON.";
#endif
}

void CxxConfig::set_xpu_dev_per_thread(int dev_no) {
#ifdef LITE_WITH_XPU
313
  lite::TargetWrapperXPU::SetDev(dev_no);
314 315 316 317 318 319
#else
  LOG(WARNING) << "The invoking of the function 'set_xpu_dev_per_thread' is "
                  "ignored, please rebuild it with LITE_WITH_XPU=ON.";
#endif
}

320 321
void CxxConfig::set_xpu_multi_encoder_precision(const std::string &precision) {
#ifdef LITE_WITH_XPU
322
  lite::TargetWrapperXPU::multi_encoder_precision = precision;
323 324 325 326 327 328 329
#else
  LOG(WARNING) << "The invoking of the function "
                  "'set_xpu_multi_encoder_precision' is "
                  "ignored, please rebuild it with LITE_WITH_XPU=ON.";
#endif
}

330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351
// set model data in combined format, `set_model_from_file` refers to loading
// model from file, set_model_from_buffer refers to loading model from memory
// buffer
void MobileConfig::set_model_from_file(const std::string &x) {
  lite_model_file_ = x;
}
void MobileConfig::set_model_from_buffer(const std::string &x) {
  lite_model_file_ = x;
  model_from_memory_ = true;
}
void MobileConfig::set_model_buffer(const char *model_buffer,
                                    size_t model_buffer_size,
                                    const char *param_buffer,
                                    size_t param_buffer_size) {
  LOG(WARNING) << "warning: `set_model_buffer` will be abandened in "
                  "release/v3.0.0, new method `set_model_from_buffer(const "
                  "std::string &x)` is recommended.";
  model_buffer_ = std::string(model_buffer, model_buffer + model_buffer_size);
  param_buffer_ = std::string(param_buffer, param_buffer + param_buffer_size);
  model_from_memory_ = true;
}

Y
Yan Chunwei 已提交
352 353
}  // namespace lite_api
}  // namespace paddle