pool_3x3.cpp 25.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef POOL_OP
W
wangliu 已提交
16 17 18 19
#define __ARM_NEON true
#ifdef _OPENMP
#include <omp.h>
#endif
W
wangliu 已提交
20
#include "framework/tensor.h"
W
wangliu 已提交
21
#include "pool_3x3.h"
22 23 24 25
#if __ARM_NEON
#include <arm_neon.h>
#endif  // __ARM_NEON
#include <climits>
W
wangliu 已提交
26 27 28 29 30 31 32
namespace paddle_mobile {
namespace operators {
namespace math {
using framework::Tensor;
using std::max;
using std::min;
using std::vector;
W
wangliu 已提交
33 34 35 36 37 38 39 40 41 42 43 44 45 46
void Pool3x3Avgs1p1(const Tensor *input, Tensor *output) {
#if __ARM_NEON
  const int batch_size = input->dims()[0];

  const int h_in = input->dims()[2];

  const int w_in = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int h_out = output->dims()[2];
  const int w_out = output->dims()[3];
  const int outputdata_channel_stride = h_out * w_out;
  const int inputdata_channel_stride = h_in * w_in;
W
wangliu 已提交
47 48
  const int input_batch_stride = output_channels * inputdata_channel_stride;
  const int output_batch_stride = output_channels * outputdata_channel_stride;
W
wangliu 已提交
49 50
  float *out_data = output->data<float>();
  const float *input_data = input->data<float>();
W
wangliu 已提交
51

W
wangliu 已提交
52 53
  const float coef = 1.0 / 9.0;
  for (int k = 0; k < batch_size; ++k) {
W
wangliu 已提交
54
#pragma omp parallel for
W
wangliu 已提交
55
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
56 57
      const float *input_seg = input_data + c * inputdata_channel_stride;
      float *output_seg = out_data + c * outputdata_channel_stride;
W
wangliu 已提交
58
      // four corner point
W
wangliu 已提交
59 60 61 62 63 64
      output_seg[0] = (input_seg[0] + input_seg[1] + input_seg[w_in] +
                       input_seg[w_in + 1]) *
                      coef;
      output_seg[w_out - 1] =
          (input_seg[w_in - 2] + input_seg[w_in - 1] + input_seg[w_in * 2 - 2] +
           input_seg[2 * w_in - 1]) *
W
wangliu 已提交
65
          coef;
W
wangliu 已提交
66 67 68
      output_seg[(h_out - 1) * w_out] =
          (input_seg[(h_in - 2) * w_in] + input_seg[(h_in - 2) * w_in + 1] +
           input_seg[(h_in - 1) * w_in] + input_seg[(h_in - 1) * w_in + 1]) *
W
wangliu 已提交
69
          coef;
W
wangliu 已提交
70 71 72 73
      output_seg[h_out * w_out - 1] =
          (input_seg[h_in * w_in - 1] + input_seg[h_in * w_in - 2] +
           input_seg[(h_in - 1) * w_in - 1] +
           input_seg[(h_in - 1) * w_in - 2]) *
W
wangliu 已提交
74 75 76
          coef;
      // left side & right side
      for (int i = 1; i < h_in - 1; ++i) {
W
wangliu 已提交
77 78 79 80
        output_seg[i * w_out] =
            (input_seg[i * w_in - w_in] + input_seg[i * w_in - w_in + 1] +
             input_seg[i * w_in] + input_seg[i * w_in + 1] +
             input_seg[i * w_in + w_in] + input_seg[i * w_in + w_in + 1]) *
W
wangliu 已提交
81
            coef;
W
wangliu 已提交
82 83 84 85 86 87 88
        output_seg[i * w_out + w_out - 1] =
            (input_seg[i * w_in - w_in + w_in - 2] +
             input_seg[i * w_in - w_in + 1 + w_in - 2] +
             input_seg[i * w_in + w_in - 2] +
             input_seg[i * w_in + 1 + w_in - 2] +
             input_seg[i * w_in + w_in + w_in - 2] +
             input_seg[i * w_in + w_in + 1 + w_in - 2]) *
W
wangliu 已提交
89 90 91
            coef;
      }
      // top 1 row & bottom 1 row
W
wangliu 已提交
92
      const float *input_tmp = input_seg;
W
wangliu 已提交
93 94 95 96 97 98 99 100 101 102

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, sum, out0;
      float32x4_t v_coef = vdupq_n_f32(coef);
      in0 = vld1q_f32(input_tmp);
      in2 = vld1q_f32(input_tmp + w_in);
      const float *input_tmp_end = input_tmp + (h_in - 2) * w_in;
      in4 = vld1q_f32(input_tmp_end);
      in6 = vld1q_f32(input_tmp_end + w_in);
      int c_mid = w_out - 2;
W
wangliu 已提交
103
      auto output_ptr = output_seg + 1;
W
wangliu 已提交
104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
        in3 = vld1q_f32(input_tmp + w_in + 4);

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        sum = vaddq_f32(in0, tmp0);
        sum = vaddq_f32(sum, tmp1);
        sum = vaddq_f32(sum, in2);
        sum = vaddq_f32(sum, tmp2);
        sum = vaddq_f32(sum, tmp3);

        vst1q_f32(output_ptr, vmulq_f32(sum, v_coef));

        in5 = vld1q_f32(input_tmp_end + 4);
        in7 = vld1q_f32(input_tmp_end + w_in + 4);

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        sum = vaddq_f32(in0, tmp0);
        sum = vaddq_f32(sum, tmp1);
        sum = vaddq_f32(sum, in2);
        sum = vaddq_f32(sum, tmp2);
        sum = vaddq_f32(sum, tmp3);

        vst1q_f32(output_ptr + (h_out - 1) * w_out, vmulq_f32(sum, v_coef));

        // can optimize to each 8 stride.
        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }
      // top right remain
W
wangliu 已提交
148 149
      float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]);
W
wangliu 已提交
150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 2);
      tmp3 = vextq_f32(in2, pad1, 2);

      sum = vaddq_f32(in0, tmp0);
      sum = vaddq_f32(sum, tmp1);
      sum = vaddq_f32(sum, in2);
      sum = vaddq_f32(sum, tmp2);
      sum = vaddq_f32(sum, tmp3);
      out0 = vmulq_f32(sum, v_coef);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, out0, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, out0, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, out0, 2);
        }
      }

      // bottom_right remain
W
wangliu 已提交
176 177
      float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]);
      float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]);
W
wangliu 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 2);
      tmp3 = vextq_f32(in6, pad3, 2);

      sum = vaddq_f32(in4, tmp0);
      sum = vaddq_f32(sum, tmp1);
      sum = vaddq_f32(sum, in6);
      sum = vaddq_f32(sum, tmp2);
      sum = vaddq_f32(sum, tmp3);
      out0 = vmulq_f32(sum, v_coef);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, out0, 2);
        }
      }
      // mid
      for (int j = 0; j < h_out - 2; ++j) {
W
wangliu 已提交
204 205
        output_ptr = output_seg + w_out * (j + 1) + 1;
        input_tmp = input_seg + j * w_in;
W
wangliu 已提交
206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240

        in0 = vld1q_f32(input_tmp);
        in2 = vld1q_f32(input_tmp + w_in);
        in4 = vld1q_f32(input_tmp + 2 * w_in);
        c_mid = w_out - 2;
        for (; c_mid > 3; c_mid -= 4) {
          in1 = vld1q_f32(input_tmp + 4);
          in3 = vld1q_f32(input_tmp + w_in + 4);
          in5 = vld1q_f32(input_tmp + 2 * w_in + 4);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          sum = vaddq_f32(in0, tmp0);
          sum = vaddq_f32(sum, tmp1);
          sum = vaddq_f32(sum, in2);
          sum = vaddq_f32(sum, tmp2);
          sum = vaddq_f32(sum, tmp3);
          sum = vaddq_f32(sum, in4);
          sum = vaddq_f32(sum, tmp4);
          sum = vaddq_f32(sum, tmp5);

          out0 = vmulq_f32(sum, v_coef);
          vst1q_f32(output_ptr, out0);
          output_ptr += 4;
          input_tmp += 4;
          in0 = in1;
          in2 = in3;
          in4 = in5;
        }
        // mid remain
W
wangliu 已提交
241 242 243
        float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
        float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
W
wangliu 已提交
244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273

        tmp0 = vextq_f32(in0, pad0, 1);
        tmp1 = vextq_f32(in0, pad0, 2);
        tmp2 = vextq_f32(in2, pad1, 1);
        tmp3 = vextq_f32(in2, pad1, 2);
        tmp4 = vextq_f32(in4, pad2, 1);
        tmp5 = vextq_f32(in4, pad2, 2);

        sum = vaddq_f32(in0, tmp0);
        sum = vaddq_f32(sum, tmp1);
        sum = vaddq_f32(sum, in2);
        sum = vaddq_f32(sum, tmp2);
        sum = vaddq_f32(sum, tmp3);
        sum = vaddq_f32(sum, in4);
        sum = vaddq_f32(sum, tmp4);
        sum = vaddq_f32(sum, tmp5);
        out0 = vmulq_f32(sum, v_coef);

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, out0, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, out0, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, out0, 2);
          }
        }
      }
W
wangliu 已提交
274 275
      //      input_data += inputdata_channel_stride;
      //      out_data += outputdata_channel_stride;
W
wangliu 已提交
276
    }
W
wangliu 已提交
277 278
    input_data += input_batch_stride;
    out_data += output_batch_stride;
W
wangliu 已提交
279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296
  }
#endif
}

void Pool3x3Maxs1p1(const Tensor *input, Tensor *output) {
#if __ARM_NEON
  const int batch_size = input->dims()[0];

  const int h_in = input->dims()[2];

  const int w_in = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int h_out = output->dims()[2];
  const int w_out = output->dims()[3];
  const int outputdata_channel_stride = h_out * w_out;
  const int inputdata_channel_stride = h_in * w_in;
W
wangliu 已提交
297 298
  const int input_batch_stride = output_channels * inputdata_channel_stride;
  const int output_batch_stride = output_channels * outputdata_channel_stride;
W
wangliu 已提交
299 300 301
  float *out_data = output->data<float>();
  const float *input_data = input->data<float>();
  for (int k = 0; k < batch_size; ++k) {
W
wangliu 已提交
302
#pragma omp parallel for
W
wangliu 已提交
303
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
304 305
      const float *input_seg = input_data + c * inputdata_channel_stride;
      float *output_seg = out_data + c * outputdata_channel_stride;
W
wangliu 已提交
306
      // four corner point
W
wangliu 已提交
307 308 309 310 311 312 313 314 315 316 317 318 319 320
      output_seg[0] = std::max(std::max(input_seg[0], input_seg[1]),
                               std::max(input_seg[w_in], input_seg[w_in + 1]));
      output_seg[w_out - 1] =
          std::max(std::max(input_seg[w_in - 2], input_seg[w_in - 1]),
                   std::max(input_seg[w_in * 2 - 2], input_seg[2 * w_in - 1]));
      output_seg[(h_out - 1) * w_out] =
          std::max(std::max(input_seg[(h_in - 2) * w_in],
                            input_seg[(h_in - 2) * w_in + 1]),
                   std::max(input_seg[(h_in - 1) * w_in],
                            input_seg[(h_in - 1) * w_in + 1]));
      output_seg[h_out * w_out - 1] = std::max(
          std::max(input_seg[(h_in - 1) * w_in - 1],
                   input_seg[(h_in - 1) * w_in - 2]),
          std::max(input_seg[h_in * w_in - 1], input_seg[h_in * w_in - 2]));
W
wangliu 已提交
321 322
      // left side & right side
      for (int i = 1; i < h_in - 1; ++i) {
W
wangliu 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337
        float max1 = std::max(input_seg[i * w_in - w_in],
                              input_seg[i * w_in - w_in + 1]);
        float max2 = std::max(input_seg[i * w_in], input_seg[i * w_in + 1]);
        float max3 = std::max(input_seg[i * w_in + w_in],
                              input_seg[i * w_in + w_in + 1]);
        output_seg[i * w_out] = std::max(std::max(max1, max2), max3);

        max1 = std::max(input_seg[i * w_in - w_in + w_in - 2],
                        input_seg[i * w_in - w_in + 1 + w_in - 2]);
        max2 = std::max(input_seg[i * w_in + w_in - 2],
                        input_seg[i * w_in + 1 + w_in - 2]);
        max3 = std::max(input_seg[i * w_in + w_in + w_in - 2],
                        input_seg[i * w_in + w_in + 1 + w_in - 2]);
        output_seg[i * w_out + w_out - 1] =
            std::max(std::max(max1, max2), max3);
W
wangliu 已提交
338 339
      }
      // top 1 row & bottom 1 row
W
wangliu 已提交
340
      const float *input_tmp = input_seg;
W
wangliu 已提交
341 342 343 344 345 346 347 348 349

      float32x4_t in0, in1, in2, in3, in4, in5, in6, in7, tmp0, tmp1, tmp2,
          tmp3, tmp4, tmp5, max;
      in0 = vld1q_f32(input_tmp);
      in2 = vld1q_f32(input_tmp + w_in);
      const float *input_tmp_end = input_tmp + (h_in - 2) * w_in;
      in4 = vld1q_f32(input_tmp_end);
      in6 = vld1q_f32(input_tmp_end + w_in);
      int c_mid = w_out - 2;
W
wangliu 已提交
350
      auto output_ptr = output_seg + 1;
W
wangliu 已提交
351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393
      for (; c_mid > 3; c_mid -= 4) {
        in1 = vld1q_f32(input_tmp + 4);
        in3 = vld1q_f32(input_tmp + w_in + 4);

        tmp0 = vextq_f32(in0, in1, 1);
        tmp1 = vextq_f32(in0, in1, 2);

        tmp2 = vextq_f32(in2, in3, 1);
        tmp3 = vextq_f32(in2, in3, 2);

        max = vmaxq_f32(in0, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in2);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);

        vst1q_f32(output_ptr, max);

        in5 = vld1q_f32(input_tmp_end + 4);
        in7 = vld1q_f32(input_tmp_end + w_in + 4);

        tmp0 = vextq_f32(in4, in5, 1);
        tmp1 = vextq_f32(in4, in5, 2);
        tmp2 = vextq_f32(in6, in7, 1);
        tmp3 = vextq_f32(in6, in7, 2);

        max = vmaxq_f32(in4, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in6);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);

        vst1q_f32(output_ptr + (h_out - 1) * w_out, max);

        input_tmp += 4;
        input_tmp_end += 4;
        output_ptr += 4;
        in0 = in1;
        in2 = in3;
        in4 = in5;
        in6 = in7;
      }
      // top right remain
W
wangliu 已提交
394 395
      float32x4_t pad0 = vdupq_n_f32(input_seg[w_in - 1]);
      float32x4_t pad1 = vdupq_n_f32(input_seg[2 * w_in - 1]);
W
wangliu 已提交
396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420

      tmp0 = vextq_f32(in0, pad0, 1);
      tmp1 = vextq_f32(in0, pad0, 2);
      tmp2 = vextq_f32(in2, pad1, 1);
      tmp3 = vextq_f32(in2, pad1, 2);

      max = vmaxq_f32(in0, tmp0);
      max = vmaxq_f32(max, tmp1);
      max = vmaxq_f32(max, in2);
      max = vmaxq_f32(max, tmp2);
      max = vmaxq_f32(max, tmp3);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + i, max, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + i, max, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + i, max, 2);
        }
      }

      // bottom_right remain
W
wangliu 已提交
421 422
      float32x4_t pad2 = vdupq_n_f32(input_seg[(h_in - 1) * w_in - 1]);
      float32x4_t pad3 = vdupq_n_f32(input_seg[h_in * w_in - 1]);
W
wangliu 已提交
423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447

      tmp0 = vextq_f32(in4, pad2, 1);
      tmp1 = vextq_f32(in4, pad2, 2);
      tmp2 = vextq_f32(in6, pad3, 1);
      tmp3 = vextq_f32(in6, pad3, 2);

      max = vmaxq_f32(in4, tmp0);
      max = vmaxq_f32(max, tmp1);
      max = vmaxq_f32(max, in6);
      max = vmaxq_f32(max, tmp2);
      max = vmaxq_f32(max, tmp3);

      for (int i = 0; i < c_mid; ++i) {
        if (i == 0) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 0);
        }
        if (i == 1) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 1);
        }
        if (i == 2) {
          vst1q_lane_f32(output_ptr + (h_out - 1) * w_out + i, max, 2);
        }
      }
      // mid
      for (int j = 0; j < h_out - 2; ++j) {
W
wangliu 已提交
448 449
        output_ptr = output_seg + (j + 1) * w_out + 1;
        input_tmp = input_seg + j * w_in;
W
wangliu 已提交
450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483

        in0 = vld1q_f32(input_tmp);
        in2 = vld1q_f32(input_tmp + w_in);
        in4 = vld1q_f32(input_tmp + 2 * w_in);
        c_mid = w_out - 2;
        for (; c_mid > 3; c_mid -= 4) {
          in1 = vld1q_f32(input_tmp + 4);
          in3 = vld1q_f32(input_tmp + w_in + 4);
          in5 = vld1q_f32(input_tmp + 2 * w_in + 4);

          tmp0 = vextq_f32(in0, in1, 1);
          tmp1 = vextq_f32(in0, in1, 2);
          tmp2 = vextq_f32(in2, in3, 1);
          tmp3 = vextq_f32(in2, in3, 2);
          tmp4 = vextq_f32(in4, in5, 1);
          tmp5 = vextq_f32(in4, in5, 2);

          max = vmaxq_f32(in0, tmp0);
          max = vmaxq_f32(max, tmp1);
          max = vmaxq_f32(max, in2);
          max = vmaxq_f32(max, tmp2);
          max = vmaxq_f32(max, tmp3);
          max = vmaxq_f32(max, in4);
          max = vmaxq_f32(max, tmp4);
          max = vmaxq_f32(max, tmp5);

          vst1q_f32(output_ptr, max);
          output_ptr += 4;
          input_tmp += 4;
          in0 = in1;
          in2 = in3;
          in4 = in5;
        }
        // mid remain
W
wangliu 已提交
484 485 486
        float32x4_t pad0 = vdupq_n_f32(input_seg[(j + 1) * w_in - 1]);
        float32x4_t pad1 = vdupq_n_f32(input_seg[(j + 2) * w_in - 1]);
        float32x4_t pad2 = vdupq_n_f32(input_seg[(j + 3) * w_in - 1]);
W
wangliu 已提交
487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515

        tmp0 = vextq_f32(in0, pad0, 1);
        tmp1 = vextq_f32(in0, pad0, 2);
        tmp2 = vextq_f32(in2, pad1, 1);
        tmp3 = vextq_f32(in2, pad1, 2);
        tmp4 = vextq_f32(in4, pad2, 1);
        tmp5 = vextq_f32(in4, pad2, 2);

        max = vmaxq_f32(in0, tmp0);
        max = vmaxq_f32(max, tmp1);
        max = vmaxq_f32(max, in2);
        max = vmaxq_f32(max, tmp2);
        max = vmaxq_f32(max, tmp3);
        max = vmaxq_f32(max, in4);
        max = vmaxq_f32(max, tmp4);
        max = vmaxq_f32(max, tmp5);

        for (int i = 0; i < c_mid; ++i) {
          if (i == 0) {
            vst1q_lane_f32(output_ptr + i, max, 0);
          }
          if (i == 1) {
            vst1q_lane_f32(output_ptr + i, max, 1);
          }
          if (i == 2) {
            vst1q_lane_f32(output_ptr + i, max, 2);
          }
        }
      }
W
wangliu 已提交
516 517
      //      input_data += inputdata_channel_stride;
      //      out_data += outputdata_channel_stride;
W
wangliu 已提交
518
    }
W
wangliu 已提交
519 520
    input_data += input_batch_stride;
    out_data += output_batch_stride;
W
wangliu 已提交
521 522 523
  }
#endif
}
W
wangliu 已提交
524 525 526 527 528 529 530 531 532 533 534 535 536 537

void Pool3x3Max(vector<int> strides, vector<int> paddings, const Tensor *input,
                Tensor *output) {
#if __ARM_NEON
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
W
wangliu 已提交
538 539 540 541 542
  //  const int _kernel_size = 3;
  const int stride = strides[0];
  //  const int stride_width = strides[1];
  const int padding = paddings[0];
  //  const int padding_width = paddings[1];
W
wangliu 已提交
543 544 545 546 547 548 549 550 551
  const float negative_max = -INT_MAX;
  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;

  const float *input_data = input->data<float>();
  float *output_data = output->mutable_data<float>();

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
W
wangliu 已提交
552
  const float *pos1, *output_ptr;
W
wangliu 已提交
553 554
  int hstart, wstart, hend, wend;
  for (int i = 0; i < batch_size; ++i) {
W
wangliu 已提交
555
#pragma omp parallel for
W
wangliu 已提交
556
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
557 558
      const float *input_seg = input_data + c * input_channel_stride;
      float *output_seg = output_data + c * output_channel_stride;
W
wangliu 已提交
559 560
      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
W
wangliu 已提交
561 562 563 564
          int hstart = ph * stride - padding;
          int wstart = pw * stride - padding;
          int hend = min(hstart + 3, input_height + padding);
          int wend = min(wstart + 3, input_width + padding);
W
wangliu 已提交
565 566 567 568
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          hend = min(hend, input_height);
          wend = min(wend, input_width);
W
wangliu 已提交
569 570 571 572
          const float *pos1 = input_seg + hstart * input_width + wstart;
          const float *pos2 = input_seg + (hstart + 1) * input_width + wstart;
          const float *pos3 = input_seg + (hstart + 2) * input_width + wstart;
          output_ptr = output_seg + ph * output_width + pw;
W
wangliu 已提交
573 574 575 576 577

          if (hend - hstart != 3 || wend - wstart != 3) {
            float max_value = -INT_MAX;
            for (int h = hstart; h < hend; h++) {
              for (int w = wstart; w < wend; w++) {
W
wangliu 已提交
578
                float value = input_seg[h * input_width + w];
W
wangliu 已提交
579 580 581 582 583
                if (value > max_value) {
                  max_value = value;
                }
              }
            }
W
wangliu 已提交
584
            output_seg[ph * output_width + pw] = max_value;
W
wangliu 已提交
585 586 587 588 589 590 591 592 593 594 595 596 597
          } else {
#if defined(ARMV7)
            asm volatile(
                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vmax.f32 q1, q1, q2            \n\t"
                "vmax.f32 q2, q1, q3            \n\t"
                "vmov.f32 d5[1],  %[negative_max]         \n\t"
                "vpmax.f32  d6, d4, d5            \n\t"
                "vpmax.f32  d7, d6, d6             \n\t"
                "vst1.32 {d7[0]},[%[output_ptr]]    \n\t"
                :
W
wangliu 已提交
598
                : [input_seg] "r"(input_seg), [pos1] "r"(pos1),
W
wangliu 已提交
599 600 601 602 603
                  [pos2] "r"(pos2), [pos3] "r"(pos3),
                  [output_ptr] "r"(output_ptr), [negative_max] "r"(negative_max)
                : "memory", "q1", "q2", "q3", "q4");
#else
            const float32x4_t data1 = vld1q_f32(pos1);
W
wangliu 已提交
604 605
            const float32x4_t data2 = vld1q_f32(pos1 + input_width);
            const float32x4_t data3 = vld1q_f32(pos1 + 2 * input_width);
W
wangliu 已提交
606
            const float32x4_t max_data =
W
wangliu 已提交
607
                vmaxq_f32(vmaxq_f32(data1, data2), data3);
W
wangliu 已提交
608 609 610 611
            float32x2_t res =
                vpmax_f32(vget_high_f32(vsetq_lane_f32(-INT_MAX, max_data, 3)),
                          vget_low_f32(max_data));
            res = vpmax_f32(res, res);
W
wangliu 已提交
612
            output_seg[ph * output_width + pw] = vget_lane_f32(res, 0);
W
wangliu 已提交
613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636
#endif
          }
        }
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
#endif
}

void Pool3x3Avg(vector<int> strides, vector<int> paddings, const Tensor *input,
                Tensor *output) {
#if __ARM_NEON
  const int batch_size = input->dims()[0];

  const int input_height = input->dims()[2];

  const int input_width = input->dims()[3];

  const int output_channels = output->dims()[1];

  const int output_height = output->dims()[2];
  const int output_width = output->dims()[3];
W
wangliu 已提交
637 638
  const int stride = strides[0];
  const int padding = paddings[0];
W
wangliu 已提交
639 640 641 642 643 644 645 646 647 648 649 650 651

  const int input_channel_stride = input_height * input_width;
  const int output_channel_stride = output_height * output_width;

  const float *input_data = input->data<float>();
  float *output_data = output->mutable_data<float>();
  const float zero = 0;
  const float nine = 1.0 / 9.0;
  const float nine_ptr[] = {nine, nine};

  const int input_batch_stride = output_channels * input_channel_stride;
  const int output_batch_stride = output_channels * output_channel_stride;
  for (int i = 0; i < batch_size; ++i) {
W
wangliu 已提交
652
#pragma omp parallel for
W
wangliu 已提交
653
    for (int c = 0; c < output_channels; ++c) {
W
wangliu 已提交
654 655
      const float *input_seg = input_data + c * input_channel_stride;
      float *output_seg = output_data + c * output_channel_stride;
W
wangliu 已提交
656 657
      for (int ph = 0; ph < output_height; ph++) {
        for (int pw = 0; pw < output_width; pw++) {
W
wangliu 已提交
658 659 660 661
          int hstart = ph * stride - padding;
          int wstart = pw * stride - padding;
          int hend = min(hstart + 3, input_height + padding);
          int wend = min(wstart + 3, input_width + padding);
W
wangliu 已提交
662 663 664 665
          hstart = max(hstart, 0);
          wstart = max(wstart, 0);
          hend = min(hend, input_height);
          wend = min(wend, input_width);
W
wangliu 已提交
666 667 668 669
          const float *pos1 = input_seg + hstart * input_width + wstart;
          const float *pos2 = input_seg + (hstart + 1) * input_width + wstart;
          const float *pos3 = input_seg + (hstart + 2) * input_width + wstart;
          float *output_ptr = output_seg + ph * output_width + pw;
W
wangliu 已提交
670 671 672 673 674

          if (hend - hstart != 3 || wend - wstart != 3) {
            float sum = 0;
            for (int h = hstart; h < hend; h++) {
              for (int w = wstart; w < wend; w++) {
W
wangliu 已提交
675
                sum += input_seg[h * input_width + w];
W
wangliu 已提交
676 677
              }
            }
W
wangliu 已提交
678
            output_seg[ph * output_width + pw] = sum / 9.0;
W
wangliu 已提交
679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694
          } else {
#if defined(ARMV7)

            asm volatile(
                "vld1.32  {q1}, [%[pos1]]        \n\t"
                "vld1.32  {q2}, [%[pos2]]        \n\t"
                "vld1.32  {q3}, [%[pos3]]        \n\t"
                "vadd.f32 q1, q1, q2            \n\t"
                "vadd.f32 q2, q1, q3            \n\t"
                "vmov.f32 d5[1],  %[zero]         \n\t"
                "vpadd.f32  d6, d4, d5            \n\t"
                "vpadd.f32  d6, d6, d6             \n\t"
                "vld1.f32 d7, [%[nine_ptr]]!        \n\t"
                "vmul.f32 d6,d7                     \n\t"
                "vst1.32 {d6[0]},[%[output_ptr]]    \n\t"
                :
W
wangliu 已提交
695
                : [input_seg] "r"(input_seg), [pos1] "r"(pos1),
W
wangliu 已提交
696 697 698 699 700 701 702 703 704 705 706 707 708 709
                  [pos2] "r"(pos2), [pos3] "r"(pos3),
                  [output_ptr] "r"(output_ptr), [zero] "r"(zero),
                  [nine_ptr] "r"(nine_ptr)
                : "memory", "r6", "q1", "q2", "q3", "q4");
#else
            const float32x4_t data1 = vld1q_f32(pos1);
            const float32x4_t data2 = vld1q_f32(pos2);
            const float32x4_t data3 = vld1q_f32(pos3);
            const float32x4_t sum_data =
                vaddq_f32(vaddq_f32(data1, data3), data2);
            float32x2_t res =
                vpadd_f32(vget_high_f32(vsetq_lane_f32(0, sum_data, 3)),
                          vget_low_f32(sum_data));
            res = vpadd_f32(res, res);
W
wangliu 已提交
710
            output_seg[ph * output_width + pw] = vget_lane_f32(res, 0) / 9.0;
W
wangliu 已提交
711 712 713 714 715 716 717 718 719 720 721 722 723 724 725
#endif
          }
        }
      }
    }
    input_data += input_batch_stride;
    output_data += output_batch_stride;
  }
#endif
}
}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile

#endif