executor.cpp 25.0 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

qnqinan's avatar
qnqinan 已提交
15
#include "framework/executor.h"
D
dolphin8 已提交
16
#include <algorithm>
17
#include <utility>
W
wangliu 已提交
18
#include <vector>
L
liuruilong 已提交
19
#include "common/enforce.h"
L
liuruilong 已提交
20
#include "common/log.h"
L
liuruilong 已提交
21
#include "framework/framework.pb-c.h"
L
liuruilong 已提交
22 23
#include "framework/lod_tensor.h"
#include "framework/operator.h"
L
liuruilong 已提交
24
#include "framework/program/program-optimize/program_optimize.h"
L
liuruilong 已提交
25 26 27 28
#include "framework/program/program_desc.h"
#include "framework/program/var_desc.h"
#include "framework/scope.h"
#include "framework/tensor.h"
qnqinan's avatar
qnqinan 已提交
29 30 31 32 33 34 35 36 37 38

#ifdef PADDLE_EXECUTOR_MULTITHREAD
#include <queue>
#include <utility>
#include "common/threadpool.h"
#endif

#ifdef PADDLE_MOBILE_CL
#include "framework/cl/cl_image.h"
#endif
W
wangliu 已提交
39 40

namespace paddle_mobile {
qnqinan's avatar
qnqinan 已提交
41
namespace framework {
42

qnqinan's avatar
qnqinan 已提交
43
using framework::Variable;
W
wangliu 已提交
44 45
using framework::Variable;

qnqinan's avatar
qnqinan 已提交
46 47
#pragma mark - executor

W
wangliu 已提交
48
template <typename Dtype, Precision P>
H
hjchen2 已提交
49
Executor<Dtype, P>::Executor(const framework::Program<Dtype> p, int batch_size,
50
                             const bool use_optimize, const bool loddable)
H
hjchen2 已提交
51 52 53 54
    : program_(p),
      batch_size_(batch_size),
      use_optimize_(use_optimize),
      loddable_(loddable) {
W
wangliu 已提交
55
  Variable *variable_ptr = program_.scope->Var("batch_size");
H
hjchen2 已提交
56
  variable_ptr->SetValue<int>(batch_size);
Refine  
陈后江 已提交
57 58
  to_predict_program_ =
      use_optimize_ ? program_.optimizeProgram : program_.originProgram;
59 60
  PADDLE_MOBILE_ENFORCE(to_predict_program_ != nullptr,
                        "to_predict_program_ == NULL!");
61
  const std::vector<std::shared_ptr<framework::BlockDesc>> &blocks =
W
wangliu 已提交
62
      to_predict_program_->Blocks();
63 64

  DLOG << "executor in loaddable mode: " << loddable_;
W
wangliu 已提交
65 66 67 68 69
  for (int i = 0; i < blocks.size(); ++i) {
    std::shared_ptr<framework::BlockDesc> block_desc = blocks[i];
    std::vector<std::shared_ptr<framework::OpDesc>> ops = block_desc->Ops();
    for (int j = 0; j < ops.size(); ++j) {
      std::shared_ptr<framework::OpDesc> op = ops[j];
70
      DLOG << "create op: " << op->Type();
W
wangliu 已提交
71 72 73
      auto op_base = framework::OpRegistry<Dtype>::CreateOp(
          op->Type(), op->GetInputs(), op->GetOutputs(), op->GetAttrMap(),
          program_.scope);
Refine  
陈后江 已提交
74 75
      // infer shape to reshape tensor before predict,
      // but for lod tensor, it will need to reshape in runtime
xiebaiyuan's avatar
xiebaiyuan 已提交
76 77 78
      if (!loddable_) {
        op_base->InferShape();
      }
W
wangliu 已提交
79 80 81
      ops_of_block_[*block_desc.get()].push_back(op_base);
    }
  }
W
wangliu 已提交
82
  if (program_.combined) {
L
liuruilong 已提交
83 84 85 86
    InitCombineMemory();
  } else {
    InitMemory();
  }
L
liuruilong 已提交
87
  std::shared_ptr<framework::BlockDesc> to_predict_block =
L
liuruilong 已提交
88
      to_predict_program_->Block(0);
L
liuruilong 已提交
89
  auto &ops = ops_of_block_[*to_predict_block.get()];
L
liuruilong 已提交
90
  for (const auto &op : ops) {
L
liuruilong 已提交
91 92
    op->Init();
  }
W
wangliu 已提交
93 94
}

95
template <typename Dtype>
96 97
static void LoadMemInternal(void **data, framework::LoDTensor *tensor,
                            bool quant_uint8 = false) {
Refine  
陈后江 已提交
98
  char **data_buf = reinterpret_cast<char **>(data);
99
  int64_t size = tensor->numel();
100
  Dtype *tensor_data = tensor->mutable_data<Dtype>();
101 102
  if (quant_uint8) {
    // should be moved into operator init function
103 104 105 106 107 108
    float min_value;
    float max_value;
    memcpy(&min_value, data_buf, sizeof(float));
    memcpy(&max_value, data_buf + sizeof(float), sizeof(float));
    data_buf += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
109
    const uint8_t *uint8_data = reinterpret_cast<uint8_t *>(data_buf);
110 111
    for (int k = 0; k < size; ++k) {
      tensor_data[k] = uint8_data[k] * factor + min_value;
W
wangliu 已提交
112
    }
113 114
    data_buf += size * sizeof(uint8_t);
  } else {
Refine  
陈后江 已提交
115 116
    memcpy(tensor_data, *data_buf, size * sizeof(Dtype));
    *data_buf += size * sizeof(Dtype);
L
liuruilong 已提交
117
  }
118
}
W
wangliu 已提交
119

120
template <typename Dtype, Precision P>
Refine  
陈后江 已提交
121
void Executor<Dtype, P>::LoadMemory(
122 123 124
    void **data, const std::shared_ptr<framework::VarDesc> var_desc,
    framework::LoDTensor *tensor) {
  char **data_buf = reinterpret_cast<char **>(data);
125
  // version
126
  uint32_t version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
127
  *data_buf += sizeof(uint32_t);
128
  // lod information
H
hjchen2 已提交
129 130 131
  // uint64_t lod_level = *(reinterpret_cast<uint64_t *>(*data_buf));
  uint64_t lod_level = 0;
  memcpy(&lod_level, *data_buf, sizeof(uint64_t));
Refine  
陈后江 已提交
132
  *data_buf += sizeof(uint64_t);
133 134 135 136

  auto *lod = tensor->mutable_lod();
  lod->resize(lod_level);
  for (uint64_t i = 0; i < lod_level; ++i) {
137
    uint64_t size = *(reinterpret_cast<uint64_t *>(*data_buf));
Refine  
陈后江 已提交
138
    *data_buf += sizeof(uint64_t);
139
    std::vector<size_t> tmp_dim(size / sizeof(size_t));
Refine  
陈后江 已提交
140
    memcpy(tmp_dim.data(), *data_buf, size);
141
    (*lod)[i] = std::move(tmp_dim);
Refine  
陈后江 已提交
142
    *data_buf += size;
W
wangliu 已提交
143
  }
144
  // tensor version
145
  uint32_t tensor_version = *(reinterpret_cast<uint32_t *>(*data_buf));
Refine  
陈后江 已提交
146
  *data_buf += sizeof(uint32_t);
147
  // tensor desc size
148
  int32_t tensor_desc_size = *(reinterpret_cast<int32_t *>(*data_buf));
Refine  
陈后江 已提交
149
  *data_buf += sizeof(int32_t);
150
  // skip tensor desc
Refine  
陈后江 已提交
151
  *data_buf += tensor_desc_size;
152

Refine  
陈后江 已提交
153
  const framework::TensorDesc &tensor_desc = var_desc->Tensor_desc();
154 155 156
  tensor->Resize(framework::make_ddim(tensor_desc.Dims()));
  // parse tensor from stream
  switch (tensor_desc.DataType()) {
W
wangliu 已提交
157
    case framework::VARTYPE_TYPE_FP32:
158 159
      LoadMemInternal<float>(reinterpret_cast<void **>(data_buf), tensor,
                             program_.quantification);
W
wangliu 已提交
160
      break;
161
    case framework::VARTYPE_TYPE_INT8:
162
      LoadMemInternal<int8_t>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
163 164
      break;
    case framework::VARTYPE_TYPE_INT32:
165
      LoadMemInternal<int>(reinterpret_cast<void **>(data_buf), tensor);
W
wangliu 已提交
166 167
      break;
    default:
168
      LOG(kLOG_ERROR) << "data type is not supported";
L
liuruilong 已提交
169
  }
W
wangliu 已提交
170 171 172 173 174 175 176
}

template <typename Dtype, Precision P>
void Executor<Dtype, P>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
177
      auto tensor = var->template GetMutable<framework::LoDTensor>();
W
wangliu 已提交
178 179 180 181
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
Refine  
陈后江 已提交
182
        char *origin_data =
Refine  
陈后江 已提交
183
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
Refine  
陈后江 已提交
184
        char *data = origin_data;
185 186
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
        delete[] origin_data;
W
wangliu 已提交
187 188
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
189
          varInputMemory(var_desc, var, tensor);
W
wangliu 已提交
190 191 192 193 194 195
        }
      }
    }
  }
}

L
liuruilong 已提交
196
template <typename Dtype, Precision P>
L
liuruilong 已提交
197
void Executor<Dtype, P>::InitCombineMemory() {
Refine  
陈后江 已提交
198
  char *origin_data = nullptr;
Refine  
陈后江 已提交
199
  bool self_alloc = false;
200
  if (program_.combined_params_buf && program_.combined_params_len) {
201 202
    origin_data = reinterpret_cast<char *>(
        const_cast<uint8_t *>(program_.combined_params_buf));
203
  } else {
Refine  
陈后江 已提交
204
    self_alloc = true;
Refine  
陈后江 已提交
205
    origin_data = ReadFileToBuff(program_.para_path);
206
  }
Refine  
陈后江 已提交
207 208
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "data == nullptr");
  char *data = origin_data;
L
liuruilong 已提交
209 210 211
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
212
      auto tensor = var->template GetMutable<framework::LoDTensor>();
L
liuruilong 已提交
213 214 215 216
      if (var_desc->Persistable()) {
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          continue;
        }
217
        LoadMemory(reinterpret_cast<void **>(&data), var_desc, tensor);
L
liuruilong 已提交
218 219
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
220
          varInputMemory(var_desc, var, tensor);
L
liuruilong 已提交
221 222 223 224
        }
      }
    }
  }
Refine  
陈后江 已提交
225
  if (self_alloc) {
226
    delete[] origin_data;
Refine  
陈后江 已提交
227 228
  }
  LOG(kLOG_INFO) << "init combine memory finish";
L
liuruilong 已提交
229
}
230

xiebaiyuan's avatar
xiebaiyuan 已提交
231 232 233 234
template <typename Dtype, Precision P>
bool Executor<Dtype, P>::varInputMemory(
    const std::shared_ptr<framework::VarDesc> &var_desc, Variable *var,
    framework::LoDTensor *tensor) const {
235 236
  auto type = var_desc->Tensor_desc().DataType();
  switch (type) {
Refine  
陈后江 已提交
237
    case framework::VARTYPE_TYPE_FP32:
238
      tensor->mutable_data<float>();
xiebaiyuan's avatar
xiebaiyuan 已提交
239
      break;
Refine  
陈后江 已提交
240
    case framework::VARTYPE_TYPE_INT8:
241
      tensor->mutable_data<int8_t>();
Refine  
陈后江 已提交
242 243
      break;
    case framework::VARTYPE_TYPE_INT32:
244
      tensor->mutable_data<int32_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
245
      break;
Refine  
陈后江 已提交
246
    case framework::VARTYPE_TYPE_INT64:
247
      tensor->mutable_data<int64_t>();
xiebaiyuan's avatar
xiebaiyuan 已提交
248
      break;
Refine  
陈后江 已提交
249
    default:
xiebaiyuan's avatar
xiebaiyuan 已提交
250 251
      break;
  }
Refine  
陈后江 已提交
252
  bool is_mute_match = (type == framework::VARTYPE_TYPE_FP32) ||
253 254 255
                       (type == framework::VARTYPE_TYPE_INT8) ||
                       (type == framework::VARTYPE_TYPE_INT32) ||
                       (type == framework::VARTYPE_TYPE_INT64);
Refine  
陈后江 已提交
256
  PADDLE_MOBILE_ENFORCE(is_mute_match, "got unhandled data type : %d", type);
xiebaiyuan's avatar
xiebaiyuan 已提交
257 258
  return is_mute_match;
}
L
liuruilong 已提交
259

W
wangliu 已提交
260
template <typename Dtype, Precision P>
W
wangliu 已提交
261 262
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t) {
W
wangliu 已提交
263 264 265 266 267 268
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  std::shared_ptr<framework::BlockDesc> to_predict_block =
W
wangliu 已提交
269
      to_predict_program_->Block(0);
D
dolphin8 已提交
270
  auto &ops = ops_of_block_[*to_predict_block.get()];
xiebaiyuan's avatar
xiebaiyuan 已提交
271

D
dolphin8 已提交
272
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
273
  std::vector<ProfInfo> profile(ops.size());
D
dolphin8 已提交
274
#endif
D
dolphin8 已提交
275
  for (int i = 0; i < ops.size(); i++) {
D
dolphin8 已提交
276
#ifdef PADDLE_MOBILE_PROFILE
D
dolphin8 已提交
277 278 279 280
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
L
liuruilong 已提交
281
    // to Run
D
dolphin8 已提交
282 283 284 285 286
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
D
dolphin8 已提交
287
  }
W
wangliu 已提交
288 289 290 291 292 293 294
  auto last_op = ops.rbegin();
  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
D
dolphin8 已提交
295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
315 316 317
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
D
dolphin8 已提交
318 319 320
  }
  printf("====================[---------]======================\n");
#endif
L
liuruilong 已提交
321
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
W
wangliu 已提交
322
}
xiebaiyuan's avatar
xiebaiyuan 已提交
323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394

template <typename Dtype, Precision P>
std::shared_ptr<framework::LoDTensor> Executor<Dtype, P>::PredictLod(
    const framework::LoDTensor &t) {
  framework::Variable *g_feed_value = program_.scope->Var("feed");
  framework::LoDTensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
  feed_tensor->set_lod(t.lod());

  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);

  auto &ops = ops_of_block_[*to_predict_block.get()];

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = 0; i < ops.size(); i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
    if (loddable_) {
      ops[i]->InferShape();
    }
    ops[i]->Run();
#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
  auto last_op = ops.rbegin();

  auto output_map = (*last_op)->Outputs();
  std::vector<std::string> out_keys = (*last_op)->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(out_keys.size() > 0, "the last op contains no output");
  framework::LoDTensor *output_tensor =
      framework::GetVarValue<framework::LoDTensor>(out_keys[0], output_map,
                                                   *(program_.scope));
#ifdef PADDLE_MOBILE_PROFILE
  std::unordered_map<std::string, uint64_t> _tp;
  for (int i = 0; i < profile.size(); i++) {
    const auto &pInfo = profile[i];
    uint64_t timeCost = pInfo.runEnd - pInfo.runBegin;
    _tp[ops[i]->Type()] += timeCost;
  }
  printf("====================[ profile ]======================\n");
  using prof_t = std::pair<std::string, uint64_t>;
  std::vector<prof_t> _tv(_tp.begin(), _tp.end());
  uint64_t _ptotal = 0;
  for (auto const &p : _tv) {
    _ptotal += p.second;
  }
  auto compf = [](const prof_t &a, const prof_t &b) {
    return a.second > b.second;
  };
  std::sort(_tv.begin(), _tv.end(), compf);
  _tv.push_back(std::make_pair("total", _ptotal));
  for (auto const &p : _tv) {
    printf("%-16s\t%-10.0f\t%-2.4f\n", p.first.c_str(),
           static_cast<float>(p.second),
           static_cast<float>(p.second) / _ptotal * 100.0);
  }
  printf("====================[---------]======================\n");
#endif
  return std::make_shared<framework::LoDTensor>(
      framework::LoDTensor(*output_tensor));
}

W
wangliu 已提交
395 396 397 398
template <typename Dtype, Precision P>
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::Predict(
    const framework::Tensor &t, int block_id) {
  return Predict(t);
W
wangliu 已提交
399 400 401
}

template <typename Dtype, Precision P>
L
liuruilong 已提交
402
std::vector<typename Executor<Dtype, P>::Ptype> Executor<Dtype, P>::Predict(
W
wangliu 已提交
403 404
    const std::vector<Ptype> &input, const std::vector<int64_t> &dims) {
  framework::Tensor tensor(input, framework::make_ddim(dims));
W
wangliu 已提交
405
  std::shared_ptr<framework::Tensor> output_tensor = Predict(tensor, 0);
qnqinan's avatar
qnqinan 已提交
406 407 408 409 410 411 412 413 414 415 416
  if (output_tensor != nullptr) {
    Executor<Dtype, P>::Ptype *output_ptr =
        output_tensor->data<typename Executor<Dtype, P>::Ptype>();
    std::vector<typename Executor<Dtype, P>::Ptype> result_vector;
    for (int j = 0; j < output_tensor->numel(); ++j) {
      result_vector.push_back(output_ptr[j]);
    }
    return result_vector;
  } else {
    DLOG << "return  empty vector";
    return {};
W
wangliu 已提交
417
  }
W
wangliu 已提交
418 419
}

420 421
#ifdef PADDLE_MOBILE_FPGA
template <typename Dtype, Precision P>
422
void Executor<Dtype, P>::InjectVariable(const framework::Tensor &t,
H
hjchen2 已提交
423
                                        std::string var_name) {
424
  framework::Variable *g_feed_value = program_.scope->Var(var_name);
425 426 427 428
  framework::Tensor *feed_tensor =
      g_feed_value->GetMutable<framework::LoDTensor>();
  feed_tensor->Resize(t.dims());
  feed_tensor->ShareDataWith(t);
429
}
430

431 432 433
template <typename Dtype, Precision P>
void Executor<Dtype, P>::FeedData(const framework::Tensor &t) {
  InjectVariable(t, "feed");
434
}
435

436
template <typename Dtype, Precision P>
437
std::shared_ptr<framework::Tensor> Executor<Dtype, P>::FetchResult(int id) {
438 439 440
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
441

Z
zhangyang 已提交
442 443 444 445 446
  PADDLE_MOBILE_ENFORCE(id < (int)ops.size(), "Index out of range");
  auto op = id < 0 ? ops[ops.size() - 1] : ops[id];
  auto output_map = op->Outputs();
  std::vector<std::string> out_keys = op->GetOutKeys();
  PADDLE_MOBILE_ENFORCE(!out_keys.empty(), "this op contains no output");
447 448 449
  auto *output_tensor = framework::GetVarValue<framework::LoDTensor>(
      out_keys[0], output_map, *(program_.scope));
  return std::make_shared<framework::Tensor>(framework::Tensor(*output_tensor));
450
}
451 452 453 454 455 456

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From_To(int start, int end) {
  std::shared_ptr<framework::BlockDesc> to_predict_block =
      to_predict_program_->Block(0);
  auto &ops = ops_of_block_[*to_predict_block.get()];
457
  end = end < 0 ? static_cast<int>(ops.size()) : end;
458 459 460 461 462 463 464 465 466 467 468 469
  PADDLE_MOBILE_ENFORCE(start >= 0 && start < end && end <= ops.size(),
                        "start or end parameter is wrong");

#ifdef PADDLE_MOBILE_PROFILE
  std::vector<ProfInfo> profile(ops.size());
#endif
  for (int i = start; i < end; i++) {
#ifdef PADDLE_MOBILE_PROFILE
    struct timespec ts;
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runBegin = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
Z
zhangyang 已提交
470
    DLOG << "Running op: " << i << "  " << ops[i]->Type();
471 472 473 474 475 476 477
    ops[i]->Run();

#ifdef PADDLE_MOBILE_PROFILE
    clock_gettime(CLOCK_MONOTONIC, &ts);
    profile[i].runEnd = (uint64_t)ts.tv_sec * 1e9 + ts.tv_nsec;
#endif
  }
478
}
479 480 481 482

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_From(int start) {
  Predict_From_To(start);
483
}
484 485 486 487

template <typename Dtype, Precision P>
void Executor<Dtype, P>::Predict_To(int end) {
  Predict_From_To(0, end);
488
}
489 490
#endif

qnqinan's avatar
qnqinan 已提交
491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713
#ifdef PADDLE_MOBILE_CL
template <typename Dtype, Precision P>
void Executor<Dtype, P>::LoadMemory(const framework::VarDesc var_desc,
                                    float *tensorInput, char **data) {}

template <>
void Executor<GPU_CL, Precision::FP32>::LoadMemory(
    const framework::VarDesc var_desc, float *tensorInput, char **data) {
  // 1. version
  uint32_t version = *reinterpret_cast<uint32_t *>(*data);

  (*data) += sizeof(uint32_t);

  // 2 Lod information
  uint64_t *lod_level_ptr = new uint64_t();
  memcpy(lod_level_ptr, (*data), sizeof(uint64_t));
  uint64_t lod_level = *lod_level_ptr;
  delete lod_level_ptr;
  (*data) += sizeof(uint64_t);

  for (uint64_t i = 0; i < lod_level; ++i) {
    uint64_t size = *reinterpret_cast<uint64_t *>(*data);
    (*data) += sizeof(uint64_t);
    std::vector<size_t> tmp(size / sizeof(size_t));

    for (int k = 0; k < tmp.size(); ++k) {
      tmp[k] = *reinterpret_cast<size_t *>(*data);
      (*data) += sizeof(size_t);
    }
  }

  // 3. tensor version
  uint32_t tensor_version = *reinterpret_cast<uint32_t *>(*data);
  (*data) += sizeof(uint32_t);

  // 4. tensor desc
  int32_t size = *reinterpret_cast<int32_t *>(*data);
  (*data) += sizeof(int32_t);

  std::unique_ptr<char[]> buf(new char[size]);
  for (int m = 0; m < size; ++m) {
    buf.get()[m] = (*data)[m];
  }
  (*data) += (sizeof(char) * size);

  const framework::TensorDesc &desc = var_desc.Tensor_desc();
  int memory_size = 1;
  for (auto l : desc.Dims()) {
    memory_size *= l;
  }

  void *memory = nullptr;
  //            int type_size = 0;
  //            switch (desc.DataType()) {
  //                case framework::VARTYPE_TYPE_FP16:
  //                    type_size = 2;
  //                    break;
  //                case framework::VARTYPE_TYPE_FP32:
  //                    type_size = 4;
  //                    memory = tensor->mutable_data<float>();
  //                    break;
  //                case framework::VARTYPE_TYPE_FP64:
  //                    type_size = 8;
  //                    break;
  //                case framework::VARTYPE_TYPE_INT32:
  //                    memory = tensor->mutable_data<int32_t>();
  //                    type_size = 4;
  //                    break;
  //                case framework::VARTYPE_TYPE_INT64:
  //                    type_size = 8;
  //                    break;
  //                case framework::VARTYPE_TYPE_BOOL:
  //                    type_size = 1;
  //                    break;
  //                default:
  //                    break;
  //            }
  int type_size = 4;
  memory = tensorInput;
  if (program_.quantification) {
    float min_value;
    float max_value;

    memcpy(&min_value, *data, sizeof(float));
    memcpy(&max_value, *data + sizeof(float), sizeof(float));
    *data += 2 * sizeof(float);
    const float factor = (max_value - min_value) / 255.0;
    uint8_t *uint8_data = reinterpret_cast<uint8_t *>(*data);
    for (int k = 0; k < memory_size; ++k) {
      static_cast<float *>(memory)[k] = uint8_data[k] * factor + min_value;
    }
    *data += (memory_size * sizeof(uint8_t));
  } else {
    for (int n = 0; n < memory_size; n++) {
      float value;
      memcpy(&value, *data + n * type_size, type_size);
      if (value < 1e-30 && value > -1e-30) {
        static_cast<float *>(memory)[n] = 0.0;
      } else {
        static_cast<float *>(memory)[n] = value;
      }
    }
    (*data) += (sizeof(char) * memory_size * type_size);
  }
}

template <>
void Executor<GPU_CL, Precision::FP32>::InitMemory() {
  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        CLImage *cl_image = nullptr;
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          var->template GetMutable<framework::LoDTensor>();
          continue;
        } else {
          cl_image = var->template GetMutable<framework::CLImage>();
        }

        char *origin_data =
            ReadFileToBuff(program_.model_path + "/" + var_desc->Name());
        char *data = origin_data;
        cl_context context = program_.scope->GetCLScpoe()->Context();
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
        int numel = 1;
        for (auto l : desc.Dims()) {
          numel *= l;
        }
        DLOG << var_desc->Name();
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &data);

        framework::DDim ddim = framework::make_ddim(desc.Dims());

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

        delete origin_data;
        paddle_mobile::memory::Free(tensorInput);
      } else {
        if (var_desc->Type() == framework::VARTYPE_TYPE_LOD_TENSOR) {
          auto cl_image = var->template GetMutable<framework::CLImage>();
          cl_context context = program_.scope->GetCLScpoe()->Context();
          cl_command_queue command_queue =
              program_.scope->GetCLScpoe()->CommandQueue();

          const framework::TensorDesc &desc = var_desc->Tensor_desc();
          //          framework::DDim ddim = framework::make_ddim(desc.Dims());
          framework::DDim ddim = cl_image->dims();
          DLOG << var_desc->Name();
          cl_image->InitEmptyImage(context, command_queue, ddim);
        }
      }
    }
  }
}

template <>
void Executor<GPU_CL, Precision::FP32>::InitCombineMemory() {
  char *origin_data = nullptr;
  bool self_alloc = false;
  if (program_.combined_params_buf && program_.combined_params_len) {
    LOG(kLOG_INFO) << "use outter memory";
    origin_data = reinterpret_cast<char *>(program_.combined_params_buf);
  } else {
    LOG(kLOG_INFO) << " begin init combine memory";
    self_alloc = true;
    origin_data = ReadFileToBuff(program_.para_path);
  }
  PADDLE_MOBILE_ENFORCE(origin_data != nullptr, "origin_data==nullptr!!!");
  float *data = reinterpret_cast<float *>(origin_data);

  for (const auto &block : to_predict_program_->Blocks()) {
    for (const auto &var_desc : block->Vars()) {
      auto var = program_.scope->Var(var_desc->Name());
      if (var_desc->Persistable()) {
        CLImage *cl_image = nullptr;
        if (var_desc->Name() == "feed" || var_desc->Name() == "fetch") {
          var->template GetMutable<framework::LoDTensor>();
          continue;
        } else {
          cl_image = var->template GetMutable<framework::CLImage>();
        }

        cl_context context = program_.scope->GetCLScpoe()->Context();

        const framework::TensorDesc &desc = var_desc->Tensor_desc();
        framework::DDim ddim = framework::make_ddim(desc.Dims());

        int numel = 1;
        for (int i = 0; i < ddim.size(); i++) {
          numel = numel * ddim[i];
        }
        float *tensorInput = static_cast<float *>(
            paddle_mobile::memory::Alloc(sizeof(float) * numel));
        LoadMemory(*var_desc, tensorInput, &origin_data);

        // has not init
        cl_image->SetTensorData(tensorInput, ddim);

        paddle_mobile::memory::Free(tensorInput);
      } else {
        auto cl_image = var->template GetMutable<framework::CLImage>();
        cl_context context = program_.scope->GetCLScpoe()->Context();
        cl_command_queue command_queue =
            program_.scope->GetCLScpoe()->CommandQueue();
        const framework::TensorDesc &desc = var_desc->Tensor_desc();
        framework::DDim ddim = cl_image->dims();
        //        framework::DDim ddim = framework::make_ddim(desc.Dims());
        cl_image->InitEmptyImage(context, command_queue, ddim);
      }
    }
  }
  if (self_alloc) {
    delete data;
  }
  LOG(kLOG_INFO) << " end init combine memory ";
}

#endif

W
wangliu 已提交
714
template class Executor<CPU, Precision::FP32>;
qnqinan's avatar
qnqinan 已提交
715

L
liuruilong 已提交
716
template class Executor<FPGA, Precision::FP32>;
W
wangliu 已提交
717

qnqinan's avatar
qnqinan 已提交
718 719 720 721 722
template class Executor<GPU_CL, Precision::FP32>;

template class Executor<GPU_MALI, Precision::FP32>;

}  // namespace framework
W
wangliu 已提交
723
}  // namespace paddle_mobile