pe.cpp 9.1 KB
Newer Older
qnqinan's avatar
qnqinan 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#include "fpga/V2/driver/pe.h"
#include "fpga/V2/config.h"
#include "fpga/V2/driver/driver.h"
#include "fpga/V2/filter.h"
#include "fpga/V2/image.h"

namespace paddle_mobile {
namespace fpga {
#define MUL8(x) (x * 8)
#define BYPASS_DONE 1

float Findfp16Max() {
  uint16_t abs_vals[16];
  uint64_t max_fp16;

  max_fp16 = reg_readq(MUL8(49));
  abs_vals[0] = (uint16_t)(0x0000007f & (max_fp16));        // NOLINT
  abs_vals[1] = (uint16_t)(0x0000007f & (max_fp16 >> 16));  // NOLINT
  abs_vals[2] = (uint16_t)(0x0000007f & (max_fp16 >> 32));  // NOLINT
  abs_vals[3] = (uint16_t)(0x0000007f & (max_fp16 >> 48));  // NOLINT
  max_fp16 = reg_readq(MUL8(50));
  abs_vals[4] = (uint16_t)(0x0000007f & (max_fp16));        // NOLINT
  abs_vals[5] = (uint16_t)(0x0000007f & (max_fp16 >> 16));  // NOLINT
  abs_vals[6] = (uint16_t)(0x0000007f & (max_fp16 >> 32));  // NOLINT
  abs_vals[7] = (uint16_t)(0x0000007f & (max_fp16 >> 48));  // NOLINT
  max_fp16 = reg_readq(MUL8(51));
  abs_vals[8] = (uint16_t)(0x0000007f & (max_fp16));         // NOLINT
  abs_vals[9] = (uint16_t)(0x0000007f & (max_fp16 >> 16));   // NOLINT
  abs_vals[10] = (uint16_t)(0x0000007f & (max_fp16 >> 32));  // NOLINT
  abs_vals[11] = (uint16_t)(0x0000007f & (max_fp16 >> 48));  // NOLINT
  max_fp16 = reg_readq(MUL8(52));
  abs_vals[12] = (uint16_t)(0x0000007f & (max_fp16));
  abs_vals[13] = (uint16_t)(0x0000007f & (max_fp16 >> 16));  // NOLINT
  abs_vals[14] = (uint16_t)(0x0000007f & (max_fp16 >> 32));  // NOLINT
  abs_vals[15] = (uint16_t)(0x0000007f & (max_fp16 >> 48));  // NOLINT

  uint16_t tmp = 0;
  for (int i = 0; i < 16; i++) {
    if (tmp < abs_vals[i]) {
      tmp = abs_vals[i];
    }
  }
  return fp16_2_fp32(tmp) / 127.0f;
}

int ComputeFpgaConv(const struct SplitConvArgs &args) {
  ComputeBasicConv(args.conv_args[0]);
}

int ComputeBasicConv(const struct ConvArgs &args) {
#ifdef FPGA_PRINT_MODE
  DLOG << "======Compute Basic Conv======";
  DLOG << "   relu_enabled:" << args.relu_enabled
       << "   sb_address:" << args.sb_address
       << "   filter_address:" << args.filter_address
       << "   filter_num:" << args.filter_num
       << "   group_num:" << args.group_num;
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif

#ifndef PADDLE_MOBILE_ZU5
  return 0;
#endif

  return 0;
}

int ComputeFpgaPool(const struct PoolingArgs &args) {
#ifdef FPGA_PRINT_MODE
  DLOG << "=============ComputeFpgaPool===========";
  DLOG << "   mode:" << args.mode
       << "   kernel_reciprocal:" << fp16_2_fp32(args.kernel_reciprocal);
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   kernel_height:" << args.kernel.height
       << "   kernel_width:" << args.kernel.width
       << "   stride_h:" << args.kernel.stride_h
       << "   stride_w:" << args.kernel.stride_w;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif
#ifndef PADDLE_MOBILE_ZU5
  return 0;
#endif
  return 0;
}

int ComputeFpgaEWAdd(const struct EWAddArgs &args) {
#ifdef FPGA_PRINT_MODE
  DLOG << "=============ComputeFpgaEWAdd===========";
  DLOG << "   relu_enabled:" << args.relu_enabled
       << "   const0:" << fp16_2_fp32(int16_t(args.const0))
       << "   const1:" << fp16_2_fp32(int16_t(args.const1));
  DLOG << "   image0_address:" << args.image0.address
       << "   image0_scale_address:" << args.image0.scale_address
       << "   image0_channels:" << args.image0.channels
       << "   image0_height:" << args.image0.height
       << "   image0_width:" << args.image0.width
       << "   pad0_height:" << args.image0.pad_height
       << "   pad0_width:" << args.image0.pad_width;
  DLOG << "   image1_address:" << args.image1.address
       << "   image1_scale_address:" << args.image1.scale_address
       << "   image1_channels:" << args.image1.channels
       << "   image1_height:" << args.image1.height
       << "   image1_width:" << args.image1.width
       << "   pad1_height:" << args.image1.pad_height
       << "   pad_width:" << args.image1.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif
#ifndef PADDLE_MOBILE_ZU5
  return 0;
#endif
  return 0;
}

int PerformBypass(const struct BypassArgs &args) {
#ifdef FPGA_PRINT_MODE
  DLOG << "=============ComputeFpgaBypass===========";
  DLOG << "   input_type:" << args.input_data_type
       << "   output_type:" << args.output_data_type
       << "   input_layout_type:" << args.input_layout_type
       << "   output_layout_type:" << args.output_layout_type;
  DLOG << "   image_address:" << args.image.address
       << "   image_scale_address:" << args.image.scale_address
       << "   image_channels:" << args.image.channels
       << "   image_height:" << args.image.height
       << "   image_width:" << args.image.width
       << "   pad_height:" << args.image.pad_height
       << "   pad_width:" << args.image.pad_width;
  DLOG << "   out_address:" << args.output.address
       << "   out_scale_address:" << args.output.scale_address;
#endif
#ifndef PADDLE_MOBILE_ZU5
  return 0;
#endif

  uint64_t ifm_src_paddr = vaddr_to_paddr(args.image.address);
  uint64_t ifm_dst_paddr = vaddr_to_paddr(args.output.address);
  uint64_t bp_enable;
  int64_t length;
  uint64_t pixels;

  // fp32->fp16
  if ((args.input_data_type) && (!args.output_data_type)) {
    pixels = (args.image.channels) * (args.image.width) * (args.image.height);
    length = pixels * sizeof(float);
    bp_enable = 0x8800000000000000 + length;
  }
  // fp16->fp32
  else if ((!args.input_data_type) && (args.output_data_type)) {
    pixels = filter::calc_aligned_channel((args.image.channels)) *
             (args.image.width) * (args.image.height);
    length = pixels * sizeof(short);
    length = align_to_x((int)length, 64);  // NOLINT
    bp_enable = 0x8a00000000000000 + length;
  }
  // fp16->fp16 findmax
  else if ((!args.input_data_type) && (!args.output_data_type)) {
    pixels = (args.image.channels) * (args.image.width) * (args.image.height);
    length = pixels * sizeof(short);
    bp_enable = 0x8900000000000000 + length;
  } else {
    return -1;
  }

  // start bypass
  reg_writeq(ifm_src_paddr, MUL8(27));
  reg_writeq(ifm_dst_paddr, MUL8(28));
  reg_writeq(0, MUL8(0));
  reg_writeq(bp_enable, MUL8(0));
  // poll
  int ret = -1;
  ret = fpga_regpoll(MUL8(48), BYPASS_DONE, 0xffffffff);
  if (ret != -1) {
    // clear "irq"
    reg_readq(MUL8(63));
  }
  // get max value
  if ((!args.input_data_type) && (!args.output_data_type)) {
    float scale = Findfp16Max();
    args.output.scale_address[0] = (float)(1.0 / scale);  // NOLINT
    args.output.scale_address[1] = scale;
  }
  return ret;
}

int ComputeFPGAConcat(const struct ConcatArgs &args) {
#ifdef FPGA_PRINT_MODE
  DLOG << "=============ComputeFpgaConcat===========";
  DLOG << "   Image_num: " << args.image_num
       << "   out_address:" << args.image_out
       << "   out_scale_address:" << args.scale_out
       << "   out_channel:" << args.out_channel;
  DLOG << "   image_height:" << args.height << "   image_width:" << args.width;
  for (int i = 0; i < args.image_num; i++) {
    DLOG << "   " << i << "th:        ";
    DLOG << "   channel_num:" << args.channel_num[i]
         << "   aligned_channel_num:" << args.aligned_channel_num[i]
         << "   image_address:" << args.images_in[i]
         << "   image_scale_address:" << args.scales_in[i];
  }
#endif

  image::concat_images(args.images_in, args.scales_in, args.image_out,
                       args.scale_out, args.image_num, args.channel_num,
                       args.height, args.width, args.aligned_channel_num,
                       args.out_channel);
  return 0;
}

}  // namespace fpga
}  // namespace paddle_mobile