unsqueeze_compute_test.cc 9.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <gtest/gtest.h>
16
#include <string>
17 18 19 20 21 22 23 24 25 26 27
#include "lite/api/paddle_use_kernels.h"
#include "lite/api/paddle_use_ops.h"
#include "lite/core/arena/framework.h"
namespace paddle {
namespace lite {

class UnsqueezeComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string x_ = "X";
  std::string out_ = "Out";
28 29
  std::string axes_tensor_ = "AxesTensor";
  std::vector<std::string> axes_tensor_list_;
30 31
  std::vector<int> axes_;
  DDim dims_;
32 33
  // input_axes_flag_: 1 for axes, 2 for axes_tensor, 3 for axes_tensor_list
  int input_axes_flag_ = 1;
34 35 36 37 38

 public:
  UnsqueezeComputeTester(const Place& place,
                         const std::string& alias,
                         const std::vector<int>& axes,
39 40 41 42 43 44 45
                         DDim dims,
                         int input_axes_flag)
      : TestCase(place, alias), dims_(dims), input_axes_flag_(input_axes_flag) {
    for (int v : axes) {
      axes_.push_back(v);
    }
  }
46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97

  void RunBaseline(Scope* scope) override {
    const auto* input = scope->FindTensor(x_);
    CHECK(input);
    auto* out = scope->NewTensor(out_);
    CHECK(out);

    DDim in_dims(dims_);
    int output_size = in_dims.size() + static_cast<int>(axes_.size());
    int cur_output_size = in_dims.size();
    std::vector<int64_t> output_shape(output_size, 0);

    // Validate Check: rank range.
    CHECK_LE(output_size, 6)
        << "The output tensor's rank should be less than 6.";

    for (int axis : axes_) {
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
      // Validate Check: the axis bound
      CHECK((cur >= 0) && (cur <= cur_output_size))
          << "The unsqueeze dims must be within range of current rank.";
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }

      output_shape[cur] = 1;
      // Add the output size.
      cur_output_size++;
    }

    // Make output shape
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }
    for (size_t i = 0; i < output_shape.size(); ++i)
      out->Resize(DDim(output_shape));
    auto* input_data = input->data<float>();
    auto* out_data = out->mutable_data<float>();
    memcpy(out_data, input_data, sizeof(float) * dims_.production());
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("unsqueeze");
    op_desc->SetInput("X", {x_});
    op_desc->SetOutput("Out", {out_});
98 99 100 101 102 103 104 105 106
    if (input_axes_flag_ == 1) {
      op_desc->SetAttr("axes", axes_);
    } else if (input_axes_flag_ == 2) {
      op_desc->SetInput("AxesTensor", {axes_tensor_});
    } else if (input_axes_flag_ == 3) {
      op_desc->SetInput("AxesTensorList", axes_tensor_list_);
    } else {
      LOG(FATAL) << "input input_axes_flag_ error. " << input_axes_flag_;
    }
107 108 109
  }

  void PrepareData() override {
110
    SetPrecisionType(out_, PRECISION(kFloat));
111 112 113 114 115
    std::vector<float> in_data(dims_.production());
    for (int i = 0; i < dims_.production(); ++i) {
      in_data[i] = i;
    }
    SetCommonTensor(x_, dims_, in_data.data());
116 117 118 119 120 121 122 123 124 125 126 127 128

    if (input_axes_flag_ == 2) {
      DDim axes_tensor_dim{{static_cast<int>(axes_.size())}};
      std::vector<int> axes_tensor_data(axes_.size());
      for (int i = 0; i < axes_tensor_dim.production(); i++) {
        axes_tensor_data[i] = axes_[i];
      }
      SetCommonTensor(axes_tensor_, axes_tensor_dim, axes_tensor_data.data());
    } else if (input_axes_flag_ == 3) {
      std::string name = "axes_tensor_";
      for (size_t i = 0; i < axes_.size(); i++) {
        name = name + std::to_string(i);
        axes_tensor_list_.push_back(name);
129
        SetCommonTensor(name, DDim({1}), &axes_[i]);
130 131
      }
    }
132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216
  }
};

class Unsqueeze2ComputeTester : public arena::TestCase {
 protected:
  // common attributes for this op.
  std::string x_ = "X";
  std::string out_ = "Out";
  std::string xshape_ = "XShape";
  std::vector<int> axes_;
  DDim dims_;

 public:
  Unsqueeze2ComputeTester(const Place& place,
                          const std::string& alias,
                          const std::vector<int>& axes,
                          DDim dims)
      : TestCase(place, alias), axes_(axes), dims_(dims) {}

  void RunBaseline(Scope* scope) override {
    const auto* input = scope->FindTensor(x_);
    CHECK(input);
    auto* out = scope->NewTensor(out_);
    CHECK(out);
    auto* xshape = scope->NewTensor(xshape_);
    CHECK(xshape);
    std::vector<int64_t> xshape_sp(dims_.size() + 1, 1);
    for (size_t i = 0; i < dims_.size(); ++i) {
      xshape_sp[i + 1] = dims_[i];
    }
    xshape->Resize(DDim(xshape_sp));

    DDim in_dims(dims_);
    int output_size = in_dims.size() + static_cast<int>(axes_.size());
    int cur_output_size = in_dims.size();
    std::vector<int64_t> output_shape(output_size, 0);

    // Validate Check: rank range.
    CHECK_LE(output_size, 6)
        << "The output tensor's rank should be less than 6.";

    for (int axis : axes_) {
      int cur = axis < 0 ? axis + cur_output_size + 1 : axis;
      // Validate Check: the axis bound
      CHECK((cur >= 0) && (cur <= cur_output_size))
          << "The unsqueeze dims must be within range of current rank.";
      // Move old axis, and insert new axis
      for (int i = cur_output_size; i >= cur; --i) {
        if (output_shape[i] == 1) {
          // Move axis
          output_shape[i + 1] = 1;
          output_shape[i] = 0;
        }
      }

      output_shape[cur] = 1;
      // Add the output size.
      cur_output_size++;
    }

    // Make output shape
    for (int in_idx = 0, out_idx = 0; out_idx < output_size; ++out_idx) {
      if (output_shape[out_idx] == 0) {
        output_shape[out_idx] = in_dims[in_idx++];
      }
    }

    out->Resize(DDim(output_shape));

    auto* input_data = input->data<float>();
    auto* out_data = out->mutable_data<float>();
    auto* xshape_data = xshape->mutable_data<float>();
    memcpy(out_data, input_data, sizeof(float) * dims_.production());
    memcpy(xshape_data, input_data, sizeof(float) * dims_.production());
  }

  void PrepareOpDesc(cpp::OpDesc* op_desc) {
    op_desc->SetType("unsqueeze2");
    op_desc->SetInput("X", {x_});
    op_desc->SetOutput("Out", {out_});
    op_desc->SetOutput("XShape", {xshape_});
    op_desc->SetAttr("axes", axes_);
  }

  void PrepareData() override {
217
    SetPrecisionType(out_, PRECISION(kFloat));
218 219 220 221 222 223 224 225 226
    std::vector<float> in_data(dims_.production());
    for (int i = 0; i < dims_.production(); ++i) {
      in_data[i] = i;
    }
    SetCommonTensor(x_, dims_, in_data.data());
  }
};

void test_unsqueeze(Place place) {
227
  for (std::vector<int> axes : {std::vector<int>({1}),
228 229 230 231 232 233
                                std::vector<int>({0, 2}),
                                std::vector<int>({0, -2})}) {
    for (int N : {1}) {
      for (int C : {3}) {
        for (int H : {1}) {
          for (int W : {5}) {
234
            for (int input_axes_flag : {1, 2, 3}) {
235 236 237 238 239 240 241 242
              LOG(INFO) << N << " " << C << " " << H << " " << W << " "
                        << input_axes_flag;
              std::unique_ptr<arena::TestCase> tester(
                  new UnsqueezeComputeTester(
                      place, "def", axes, DDim({N, C, H, W}), input_axes_flag));
              arena::Arena arena(std::move(tester), place, 2e-5);
              arena.TestPrecision();
            }
243 244 245 246 247 248 249 250
          }
        }
      }
    }
  }
}

void test_unsqueeze2(Place place) {
251
  for (std::vector<int> axes : {std::vector<int>({0}),
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290
                                std::vector<int>({0, 2}),
                                std::vector<int>({0, -2})}) {
    for (int N : {1}) {
      for (int C : {3}) {
        for (int H : {1}) {
          for (int W : {5}) {
            std::unique_ptr<arena::TestCase> tester(new Unsqueeze2ComputeTester(
                place, "def", axes, DDim({N, C, H, W})));
            arena::Arena arena(std::move(tester), place, 2e-5);
            arena.TestPrecision();
          }
        }
      }
    }
  }
}

TEST(squeeze, precision) {
#ifdef LITE_WITH_X86
  Place place(TARGET(kX86));
#endif
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_unsqueeze(place);
#endif
}

TEST(squeeze2, precision) {
#ifdef LITE_WITH_X86
  Place place(TARGET(kX86));
#endif
#ifdef LITE_WITH_ARM
  Place place(TARGET(kARM));
  test_unsqueeze2(place);
#endif
}

}  // namespace lite
}  // namespace paddle