layout_compute.cc 7.9 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/paddle_place.h"
16
#include "lite/backends/fpga/KD/float16.hpp"
Y
Yan Chunwei 已提交
17 18 19 20 21 22 23 24 25 26 27 28
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/core/target_wrapper.h"
#include "lite/core/type_system.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
template <typename T>
void convert_to_hwc(
    T* chw_data, T* hwc_data, int num, int channel, int height, int width) {
  int chw = channel * height * width;
  int wc = width * channel;
  int index = 0;
  for (int n = 0; n < num; n++) {
    for (int c = 0; c < channel; c++) {
      for (int h = 0; h < height; h++) {
        for (int w = 0; w < width; w++) {
          hwc_data[n * chw + h * wc + w * channel + c] = chw_data[index];
          index++;
        }
      }
    }
  }
}

template <typename T>
void hwc_to_chw(
    T* chw_data, T* hwc_data, int num, int channel, int height, int width) {
  int chw = channel * height * width;
  int wc = width * channel;
  int wh = width * height;
  int index = 0;
  for (int n = 0; n < num; n++) {
    for (int h = 0; h < height; h++) {
      for (int w = 0; w < width; w++) {
        for (int c = 0; c < channel; c++) {
          chw_data[n * chw + c * wh + h * width + w] = hwc_data[index];
          index++;
        }
      }
    }
  }
}

void TransHwcToChw(Tensor* dest, const Tensor* src) {
  if (src->ZynqTensor()->dataType() == zynqmp::FP32) {
    float* chw = dest->mutable_data<float>();
    float* hwc = const_cast<float*>(src->data<float>());
    int num = dest->dims()[0];
    int channel = dest->dims()[1];
    int height = 1;
    if (dest->dims().size() > 2) {
      height = dest->dims()[2];
    }
    int width = 1;
    if (dest->dims().size() > 3) {
      width = dest->dims()[3];
    }

    hwc_to_chw<float>(chw, hwc, num, channel, height, width);
  }

  if (src->ZynqTensor()->dataType() == zynqmp::FP16) {
    float16* chw = dest->mutable_data<float16>();
    float16* hwc = const_cast<float16*>(src->data<float16>());
    int num = dest->dims()[0];
    int channel = dest->dims()[1];
    int height = 1;
    if (dest->dims().size() > 2) {
      height = dest->dims()[2];
    }
    int width = 1;
    if (dest->dims().size() > 3) {
      width = dest->dims()[3];
    }

    hwc_to_chw<float16>(chw, hwc, num, channel, height, width);
  }
}
void TransChwToHwc(Tensor* dest, const Tensor* src) {
  std::cout << "chw to hwc \n";
  exit(-1);
}
Y
Yan Chunwei 已提交
105 106 107 108 109 110

class TransHwcToChwCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kNHWC)> {
 public:
  void Run() override {
    auto& param = Param<operators::LayoutParam>();
111
    param.x->ZynqTensor()->syncToCPU();
Y
Yan Chunwei 已提交
112
    TransHwcToChw(param.y, param.x);
113 114 115 116 117
    param.y->ZynqTensor()->flush();
    param.y->ZynqTensor()->copyScaleFrom(param.x->ZynqTensor());

    auto out_lod = param.y->mutable_lod();
    *out_lod = param.x->lod();
Y
Yan Chunwei 已提交
118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178
  }

  std::unique_ptr<type_infer_handler_t> GetTypeInferHandler() override {
    std::unique_ptr<type_infer_handler_t> res(new type_infer_handler_t);
    *res = [](const std::map<std::string, const Type*>& inputs,
              const std::string& out) -> const Type* {
      CHECK(!inputs.empty());
      auto* type = inputs.at("Input");
      CHECK(type->layout() == DATALAYOUT(kNHWC));

      auto out_place = type->place();
      out_place.layout = DATALAYOUT(kNHWC);
      auto* out_type = Type::Get(type->id(),
                                 out_place.target,
                                 out_place.precision,
                                 out_place.layout,
                                 out_place.device);
      return out_type;
    };
    return res;
  }

  std::string doc() const override { return "Trans Layout from NHWC to NCHW"; }
};

/*
 * This kernel copies a tensor from FPGA to host space.
 */
class TransChwToHwcCompute
    : public KernelLite<TARGET(kFPGA), PRECISION(kAny), DATALAYOUT(kNHWC)> {
 public:
  void Run() override {
    auto& param = Param<operators::LayoutParam>();
    auto out_data = param.y->mutable_data<float16>(TARGET(kFPGA));
    TransChwToHwc(param.y, param.x);
  }

  std::string doc() const override { return "Trans Layout from NHWC to NCHW"; }
};

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(layout,
                     kFPGA,
                     kAny,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransHwcToChwCompute,
                     hwc_to_chw_fpga_fp16)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194
REGISTER_LITE_KERNEL(layout,
                     kFPGA,
                     kAny,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransHwcToChwCompute,
                     hwc_to_chw_arm_float)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kARM),
                                      PRECISION(kFloat),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kARM),
                                       PRECISION(kFloat),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

Y
Yan Chunwei 已提交
195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241
REGISTER_LITE_KERNEL(layout,
                     kFPGA,
                     kAny,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransChwToHwcCompute,
                     chw_to_hwc_fpga_fp16)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kFPGA,
                     kAny,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransHwcToChwCompute,
                     hwc_to_chw_fpga_fp16)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNCHW))})
    .Finalize();

REGISTER_LITE_KERNEL(layout_once,
                     kFPGA,
                     kAny,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransChwToHwcCompute,
                     chw_to_hwc_fpga_fp16)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNCHW))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();