softmax_kernel.cpp 3.4 KB
Newer Older
H
hanbuhe 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef SOFTMAX_OP

Z
zhangyang 已提交
17 18 19
#include "operators/kernel/softmax_kernel.h"
#include "operators/kernel/central-arm-func/softmax_arm_func.h"

H
hanbuhe 已提交
20 21 22 23
namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
24
bool SoftmaxKernel<FPGA, float>::Init(SoftmaxParam<FPGA> *param) {
25
  auto input = const_cast<LoDTensor *>(param->InputX());
26
  auto input_ptr = input->data<half>();
27
  auto out = param->Out();
28

Z
zhangyang 已提交
29
  auto float_input = new Tensor;
30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

  PADDLE_MOBILE_ENFORCE(input->dims().size() == 4,
                        "Softmax should have 4-order input");
  auto dims = framework::vectorize(input->dims());
  auto channel = dims[3];
  if (channel == 1) {  // This input is generated by FC op, dims = [N C 1 1]
    PADDLE_MOBILE_ENFORCE(dims[2] == 1, "Softmax input must come from FC op");
    dims[3] = dims[1];
    dims[1] = 1;
  }
  input->Resize(framework::make_ddim(dims));
  float_input->Resize(framework::make_ddim(dims));

  if (channel != 2) {  // Use CPU
    float_input->init(typeid(float));
    fpga::format_fp32_ofm(float_input);
    fpga::format_fp32_ofm(out);

    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP32;
    args.image.address = input_ptr;
    args.image.height = (uint32_t)dims[1];
    args.image.width = (uint32_t)dims[2];
    args.image.channels = (uint32_t)dims[3];
    args.output.address = float_input->data<float>();
    args.output.scale_address = float_input->scale;
    param->SetFloatInput(float_input);
    param->SetFpgaArgs(args);
  } else {  // Use FPGA
    fpga::format_fp16_ofm(out);
    fpga::BypassArgs args = {fpga::DATA_TYPE_FP16};
    args.input_layout_type = fpga::LAYOUT_HWC;
    args.output_layout_type = fpga::LAYOUT_CHW;
    args.input_data_type = fpga::DATA_TYPE_FP16;
    args.output_data_type = fpga::DATA_TYPE_FP16;
    args.image.address = input_ptr;
    args.image.height = (uint32_t)input->dims()[1];
    args.image.width = (uint32_t)input->dims()[2];
    args.image.channels = (uint32_t)input->dims()[3];
    args.output.address = out->data<half>();
    args.output.scale_address = out->scale;
    args.output.activation.activation_type = fpga::SOFTMAX;
    param->SetFpgaArgs(args);
76
  }
qnqinan's avatar
qnqinan 已提交
77

H
hanbuhe 已提交
78 79 80 81
  return true;
}

template <>
82
void SoftmaxKernel<FPGA, float>::Compute(const SoftmaxParam<FPGA> &param) {
83
  fpga::PerformBypass(param.FpgaArgs());
84 85 86 87 88 89 90 91

  if (param.FpgaArgs().output.activation.activation_type != fpga::SOFTMAX) {
    Tensor *out = param.Out();
    Tensor *in_x = param.FloatInput();
    fpga::fpga_invalidate(in_x->data<float>(), in_x->numel() * sizeof(float));
    math::SoftmaxFuntor<CPU, float>()(in_x, out);
    fpga::fpga_flush(out->data<float>(), out->memory_size());
  }
H
hanbuhe 已提交
92 93 94 95 96 97
}

}  // namespace operators
}  // namespace paddle_mobile

#endif