light_api_impl.cc 2.4 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/api/light_api.h"
#include "lite/api/paddle_api.h"
#include "lite/model_parser/model_parser.h"

namespace paddle {
namespace lite_api {

class LightPredictorImpl : public PaddlePredictor {
 public:
  LightPredictorImpl() = default;

  std::unique_ptr<Tensor> GetInput(int i) override;

  std::unique_ptr<const Tensor> GetOutput(int i) const override;

  void Run() override;

  std::unique_ptr<const Tensor> GetTensor(
      const std::string& name) const override;

  void Init(const MobileConfig& config);

 private:
  std::unique_ptr<lite::LightPredictor> raw_predictor_;
};

void LightPredictorImpl::Init(const MobileConfig& config) {
  // LightPredictor Only support NaiveBuffer backend in publish lib
43 44 45 46
#ifdef LITE_WITH_ARM
  lite::DeviceInfo::Init();
  lite::DeviceInfo::Global().SetRunMode(config.power_mode(), config.threads());
#endif
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76
  raw_predictor_.reset(new lite::LightPredictor(config.model_dir(),
                                                LiteModelType::kNaiveBuffer));
}

std::unique_ptr<Tensor> LightPredictorImpl::GetInput(int i) {
  return std::unique_ptr<Tensor>(new Tensor(raw_predictor_->GetInput(i)));
}

std::unique_ptr<const Tensor> LightPredictorImpl::GetOutput(int i) const {
  return std::unique_ptr<Tensor>(new Tensor(raw_predictor_->GetOutput(i)));
}

void LightPredictorImpl::Run() { raw_predictor_->Run(); }

std::unique_ptr<const Tensor> LightPredictorImpl::GetTensor(
    const std::string& name) const {
  return std::unique_ptr<const Tensor>(
      new Tensor(raw_predictor_->GetTensor(name)));
}

template <>
std::shared_ptr<PaddlePredictor> CreatePaddlePredictor(
    const MobileConfig& config) {
  auto x = std::make_shared<LightPredictorImpl>();
  x->Init(config);
  return x;
}

}  // namespace lite_api
}  // namespace paddle