softmax_op_test.cc 4.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/softmax_op.h"
#include <gtest/gtest.h>
#include "lite/core/op_registry.h"
Z
zhupengyang 已提交
18 19
#include "lite/kernels/npu/bridges/registry.h"
#include "lite/kernels/npu/bridges/test_helper.h"
Y
Yan Chunwei 已提交
20 21 22

namespace paddle {
namespace lite {
Z
zhupengyang 已提交
23
namespace kernels {
Y
Yan Chunwei 已提交
24
namespace npu {
Z
zhupengyang 已提交
25
namespace bridges {
Y
Yan Chunwei 已提交
26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75

template <typename dtype>
void softmax_ref(const std::shared_ptr<operators::SoftmaxOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto out =
      scope->FindVar(op_info->Output("Out").front())->GetMutable<Tensor>();
  auto x_data = x->data<dtype>();
  auto out_data = out->mutable_data<dtype>();
  DDim x_dims = x->dims();

  auto x_rank = x_dims.size();
  int axis = op_info->GetAttr<int>("axis");
  if (axis < 0) {
    axis += x_rank;
  }
  int axis_size = x_dims[axis];
  int outer_num = x_dims.Slice(0, axis).production();
  int inner_num = x_dims.Slice(axis + 1, x_rank).production();
  int compute_size = outer_num * inner_num;
  for (int i = 0; i < compute_size; i++) {
    int idx_inner = i % inner_num;
    int idx_outer = (i / inner_num) * axis_size;
    int start = idx_outer * inner_num + idx_inner;
    int offset;

    offset = start;
    dtype max_data = std::numeric_limits<dtype>::lowest();
    for (int j = 0; j < axis_size; j++) {
      max_data = x_data[offset] > max_data ? x_data[offset] : max_data;
      offset += inner_num;
    }

    offset = start;
    dtype sum_data = (dtype)0;
    for (int j = 0; j < axis_size; j++) {
      out_data[offset] = exp(x_data[offset] - max_data);
      sum_data += out_data[offset];
      offset += inner_num;
    }

    offset = start;
    for (int j = 0; j < axis_size; j++) {
      out_data[offset] /= sum_data;
      offset += inner_num;
    }
  }
}

76
void test_softmax(const std::vector<int64_t>& input_shape, int axis) {
Y
Yan Chunwei 已提交
77 78 79 80 81 82 83 84
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
85
  x->Resize(input_shape);
Y
Yan Chunwei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113

  // initialize input&output data
  FillTensor<float>(x);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("softmax");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetOutput("Out", {out_var_name});
  opdesc.SetAttr("axis", axis);

  // create and convert op to NPU model, then run it on NPU
  auto op = CreateOp<operators::SoftmaxOp>(opdesc, &scope);
  LauchOp(op, {x_var_name}, {out_var_name});
  out_ref->CopyDataFrom(*out);

  // execute reference implementation and save to output tensor
  softmax_ref<float>(op);

  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

TEST(NPUBridges, softmax) {
114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143
  test_softmax({1, 4}, -1);
  // Bug exists in HiAI DDK when the number of items > 16500
  // test_softmax({1, 16500}, -1);
  test_softmax({1, 4}, 0);
  test_softmax({1, 4}, 1);
  test_softmax({3, 4}, -1);
  test_softmax({3, 4}, 0);
  test_softmax({3, 4}, 1);
  test_softmax({1, 4, 7}, -1);
  test_softmax({1, 4, 7}, 0);
  // Bug exists in HiAI DDK when axis is 1 and iw > 1
  // test_softmax({1, 4, 7}, 1);
  test_softmax({1, 4, 1}, 1);
  test_softmax({1, 4, 7}, 2);
  test_softmax({3, 4, 7}, -1);
  test_softmax({3, 4, 7}, 0);
  test_softmax({3, 4, 1}, 1);
  test_softmax({3, 4, 7}, 2);
  test_softmax({1, 4, 7, 9}, -1);
  test_softmax({1, 4, 7, 9}, 0);
  test_softmax({1, 4, 7, 9}, 1);
  // Bug exists in HiAI DDK when axis is 2 and iw > 1
  // test_softmax({1, 4, 7, 9}, 2);
  test_softmax({1, 4, 7, 1}, 2);
  test_softmax({1, 4, 7, 9}, 3);
  test_softmax({3, 4, 7, 9}, -1);
  test_softmax({3, 4, 7, 9}, 0);
  test_softmax({3, 4, 7, 9}, 1);
  test_softmax({3, 4, 7, 1}, 2);
  test_softmax({3, 4, 7, 9}, 3);
Y
Yan Chunwei 已提交
144 145
}

Z
zhupengyang 已提交
146
}  // namespace bridges
Y
Yan Chunwei 已提交
147
}  // namespace npu
Z
zhupengyang 已提交
148
}  // namespace kernels
Y
Yan Chunwei 已提交
149 150 151 152 153
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(softmax);
USE_NPU_BRIDGE(softmax);