batchnorm_kernel.cpp 3.4 KB
Newer Older
Z
zhaojiaying01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef BATCHNORM_OP

#include "operators/kernel/batchnorm_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool BatchNormKernel<GPU_CL, float>::Init(BatchNormParam<GPU_CL> *param) {
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50
  this->cl_helper_.AddKernel("batchnorm", "batchnorm_kernel.cl");
  const framework::CLImage *mean = param->InputMean();
  const framework::CLImage *variance = param->InputVariance();
  const framework::CLImage *scale = param->InputScale();
  const framework::CLImage *bias = param->InputBias();
  const float epsilon = param->Epsilon();

  auto mean_ptr = mean->data<float>();
  auto variance_ptr = variance->data<float>();
  auto scale_ptr = scale->data<float>();
  auto bias_ptr = bias->data<float>();

  const int C = mean->numel();
  float inv_std_ptr[C];
  for (int i = 0; i < C; i++) {
    inv_std_ptr[i] =
        1 / static_cast<float>(pow((variance_ptr[i] + epsilon), 0.5));
  }
  float *new_scale_ptr = new float[C];
  float *new_bias_ptr = new float[C];

  for (int i = 0; i < C; i++) {
    new_scale_ptr[i] = inv_std_ptr[i] * scale_ptr[i];
    new_bias_ptr[i] = bias_ptr[i] - mean_ptr[i] * inv_std_ptr[i] * scale_ptr[i];
  }

  framework::CLImage *new_scale = new framework::CLImage();
L
liuruilong 已提交
51
  new_scale->SetTensorData(new_scale_ptr, variance->dims());
L
liuruilong 已提交
52 53
  new_scale->InitCLImage(this->cl_helper_.CLContext(),
                         this->cl_helper_.CLCommandQueue());
L
liuruilong 已提交
54

55
  framework::CLImage *new_bias = new framework::CLImage();
L
liuruilong 已提交
56
  new_bias->SetTensorData(new_bias_ptr, variance->dims());
L
liuruilong 已提交
57 58
  new_bias->InitCLImage(this->cl_helper_.CLContext(),
                        this->cl_helper_.CLCommandQueue());
59 60 61 62

  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);

L
liuruilong 已提交
63 64 65
  delete[](new_scale_ptr);
  delete[](new_bias_ptr);

Z
zhaojiaying01 已提交
66 67 68 69 70
  return true;
}

template <>
void BatchNormKernel<GPU_CL, float>::Compute(
71 72 73 74 75 76 77 78
    const BatchNormParam<GPU_CL> &param) {
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.OutputY());

  auto input = param.InputX()->GetCLImage();
  auto out = param.OutputY()->GetCLImage();
  auto new_scale = param.NewScale()->GetCLImage();
  auto new_bias = param.NewBias()->GetCLImage();
L
liuruilong 已提交
79
  const int out_width = default_work_size[1];
80 81 82 83 84 85 86

  clSetKernelArg(kernel, 1, sizeof(int), &out_width);
  clSetKernelArg(kernel, 2, sizeof(cl_mem), &input);
  clSetKernelArg(kernel, 3, sizeof(cl_mem), &new_scale);
  clSetKernelArg(kernel, 4, sizeof(cl_mem), &new_bias);
  clSetKernelArg(kernel, 5, sizeof(cl_mem), &out);

L
liuruilong 已提交
87 88
  //  cl_event out_event = param.OutputY()->GetClEvent();
  //  cl_event wait_event = param.InputX()->GetClEvent();
89
  clEnqueueNDRangeKernel(this->cl_helper_.CLCommandQueue(), kernel, 3, NULL,
L
liuruilong 已提交
90
                         default_work_size.data(), NULL, 0, NULL, NULL);
91
}
Z
zhaojiaying01 已提交
92 93 94 95 96 97 98

template class BatchNormKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif