PaddleMobileCPU.mm 8.8 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

3 4 5
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
L
liuruilong 已提交
6

7
 http://www.apache.org/licenses/LICENSE-2.0
L
liuruilong 已提交
8

9 10 11 12 13 14
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

15
#import "PaddleMobileCPU.h"
H
hjchen2 已提交
16 17
#import "framework/load_ops.h"
#import "framework/tensor.h"
18 19 20 21
#import "io/paddle_mobile.h"
#import <memory>
#import <vector>

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49
@interface PaddleMobileCPUResult()

-(void)toSetOutput:(float *)output;

-(void)toSetOutputSize:(int)outputSize;

@end

@implementation PaddleMobileCPUResult

-(void)releaseOutput {
  delete [] _output;
  _output = nil;
  _outputSize = 0;
}

-(void)toSetOutput:(float *)output {
  _output = output;
}

-(void)toSetOutputSize:(int)outputSize {
  _outputSize = outputSize;
}

@end


@interface  PaddleMobileCPU()
50 51 52 53 54 55
{
  paddle_mobile::PaddleMobile<paddle_mobile::CPU, paddle_mobile::Precision::FP32> *pam_;
  BOOL loaded_;
}
@end

56
@implementation PaddleMobileCPU
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84

static std::mutex shared_mutex;

- (instancetype)init {
  if (self = [super init]) {
    pam_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU, paddle_mobile::Precision::FP32>();
  }
  return self;
}

- (void)dealloc {
  if (pam_) {
    delete pam_;
  }
}

+ (instancetype)sharedInstance{
  static dispatch_once_t onceToken;
  static id sharedManager = nil;
  dispatch_once(&onceToken, ^{
    sharedManager = [[[self class] alloc] init];
  });
  return sharedManager;
}

- (BOOL)load:(NSString *)modelPath andWeightsPath:(NSString *)weighsPath{
  std::string model_path_str = std::string([modelPath UTF8String]);
  std::string weights_path_str = std::string([weighsPath UTF8String]);
D
dolphin8 已提交
85
  pam_->SetThreadNum(2);
L
liuruilong 已提交
86
  if (loaded_ = pam_->Load(model_path_str, weights_path_str, true)) {
87 88 89 90 91 92
    return YES;
  } else {
    return NO;
  }
}

93 94 95 96 97 98 99 100
- (BOOL)LoadCombinedMemory:(size_t)modelLen
               andModelBuf:(const uint8_t *)modelBuf
         andModelParamsLen:(size_t)combinedParamsLen
      andCombinedParamsBuf:(const uint8_t *)combinedParamsBuf {
  pam_->SetThreadNum(2);
  return loaded_ = pam_->LoadCombinedMemory(modelLen, modelBuf, combinedParamsLen, combinedParamsBuf);
}

L
liuruilong 已提交
101 102 103 104 105 106 107 108 109
- (BOOL)load:(NSString *)modelAndWeightPath{
  std::string model_path_str = std::string([modelAndWeightPath UTF8String]);
  if (loaded_ = pam_->Load(model_path_str)) {
    return YES;
  } else {
    return NO;
  }
}

110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160

-(void)preprocess:(CGImageRef)image
           output:(float *)output
            means:(NSArray<NSNumber *> *)means
        scale:(float)scale
        dim:(NSArray<NSNumber *> *)dim {
  std::lock_guard<std::mutex> lock(shared_mutex);

  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int imageWidth = CGImageGetWidth(image);
  const int imageHeight = CGImageGetHeight(image);
  const int imageChannels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  int wanted_input_width = dim_vec[3];
  int wanted_input_height = dim_vec[2];
  int wanted_input_channels = dim_vec[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }

}

161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
-(void)preprocess:(const UInt8 *)input output:(float *)output imageWidth:(int)imageWidth imageHeight:(int)imageHeight imageChannels:(int)imageChannels means:(NSArray<NSNumber *> *)means scale:(float)scale dim:(std::vector<int64_t>)dim{
  if (means == nil) {
    means = @[@0, @0, @0];
  }

  int wanted_input_width = dim[3];
  int wanted_input_height = dim[2];
  int wanted_input_channels = dim[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }
}

191 192 193 194 195 196 197 198 199 200
- (PaddleMobileCPUResult *)predictInput:(float *)input
                      dim:(NSArray<NSNumber *> *)dim {
  std::lock_guard<std::mutex> lock(shared_mutex);
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
L
liuruilong 已提交
201 202
    return nil;
  }
203

204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238
  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  paddle_mobile::framework::Tensor input_tensor;

  paddle_mobile::framework::DDim dims = paddle_mobile::framework::make_ddim(dim_vec);

  float *input_ptr = input_tensor.mutable_data<float>(dims);

  memcpy(input_ptr, input,
         numel * sizeof(float));

  std::shared_ptr<paddle_mobile::framework::Tensor> output = pam_->Predict(input_tensor);

  float *output_pointer = new float[output->numel()];

  memcpy(output_pointer, output->data<float>(),
         output->numel() * sizeof(float));

  PaddleMobileCPUResult *cpuResult = [[PaddleMobileCPUResult alloc] init];
  [cpuResult toSetOutput: output_pointer];
  [cpuResult toSetOutputSize: output->numel()];

  return cpuResult;
}

- (NSArray *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim means:(NSArray<NSNumber *> *)means scale:(float)scale{
//  printf(" predict one ");
  std::lock_guard<std::mutex> lock(shared_mutex);
239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
    return nil;
  }

  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int image_width = CGImageGetWidth(image);
  const int image_height = CGImageGetHeight(image);
  const int image_channels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  // sample image
  float *output = (float *)malloc(numel*sizeof(float));
  [self preprocess:input output:output imageWidth:image_width imageHeight:image_height imageChannels:image_channels means:means scale:scale dim:dim_vec];
  float *dataPointer = nullptr;
  if (nullptr != output) {
    dataPointer = output;
  } else {
    return nil;
  }

  // input
277
  std::vector<float> predict_input;
278
  for (int j = 0; j < numel; ++j) {
279
    predict_input.push_back(dataPointer[j]);
280 281 282
  }

  // predict
283
  std::vector<float> cpp_result = pam_->Predict(predict_input, dim_vec);
284 285 286 287 288 289 290 291 292

  // result
  long count = 0;
  count = cpp_result.size();
  NSMutableArray *result = [[NSMutableArray alloc] init];
  for (int i = 0; i < count; i++) {
    [result addObject:[NSNumber numberWithFloat:cpp_result[i]]];
  }

L
liuruilong 已提交
293

294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313
  free(output);

  // 待验证
  //  if ([UIDevice currentDevice].systemVersion.doubleValue < 11.0) {
  CFRelease(cfData);
  cfData = NULL;
  //  }

  return result;
}

- (NSArray *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim {
  [self predict:image dim:dim means:nil scale:1];
}

- (void)clear{
  pam_->Clear();
}

@end