activation_ops.cc 5.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.i

#include "lite/operators/activation_ops.h"
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace operators {

bool ActivationOp::CheckShape() const {
  CHECK_OR_FALSE(param_.X);
  CHECK_OR_FALSE(param_.Out);
  return true;
}

bool ActivationOp::InferShape() const {
  param_.Out->Resize(param_.X->dims());
  auto out_lod = param_.Out->mutable_lod();
  *out_lod = param_.X->lod();
  return true;
}

bool ActivationOp::AttachImpl(const cpp::OpDesc& opdesc, lite::Scope* scope) {
  auto x_name = opdesc.Input("X").front();
  auto out_name = opdesc.Output("Out").front();
  param_.X = scope->FindVar(x_name)->GetMutable<lite::Tensor>();
39 40 41 42 43 44

  if (opdesc.Type() == "relu") {
    // relu
    param_.active_type = lite_api::ActivationType::kRelu;
  } else if (opdesc.Type() == "leaky_relu") {
    // leaky_relu
Y
Yan Chunwei 已提交
45
    param_.Leaky_relu_alpha = opdesc.GetAttr<float>("alpha");
46 47 48
    param_.active_type = lite_api::ActivationType::kLeakyRelu;
  } else if (opdesc.Type() == "relu_clipped") {
    // relu_clipped
Y
Yan Chunwei 已提交
49
    param_.Relu_clipped_coef = opdesc.GetAttr<float>("Relu_clipped_coef");
50 51
  } else if (opdesc.Type() == "prelu") {
    // prelu
Y
Yan Chunwei 已提交
52 53 54 55
    param_.Prelu_mode = opdesc.GetAttr<std::string>("mode");
    auto prelu_alpha_name = opdesc.Input("Alpha").front();
    param_.Prelu_alpha =
        scope->FindVar(prelu_alpha_name)->GetMutable<lite::Tensor>();
56 57 58
    param_.active_type = lite_api::ActivationType::kPRelu;
  } else if (opdesc.Type() == "swish") {
    // swish
Y
Yan Chunwei 已提交
59
    param_.Swish_beta = opdesc.GetAttr<float>("beta");
60 61 62
    param_.active_type = lite_api::ActivationType::kSwish;
  } else if (opdesc.Type() == "hard_sigmoid") {
    // hard_sigomid
63 64
    param_.hard_sigmoid_slope = opdesc.GetAttr<float>("slope");
    param_.hard_sigmoid_offset = opdesc.GetAttr<float>("offset");
65 66 67 68 69 70 71 72 73
  } else if (opdesc.Type() == "sigmoid") {
    // sigmoid
    param_.active_type = lite_api::ActivationType::kSigmoid;
  } else if (opdesc.Type() == "tanh") {
    // tanh
    param_.active_type = lite_api::ActivationType::kTanh;
  } else if (opdesc.Type() == "exp") {
    // exp
    param_.active_type = lite_api::ActivationType::kExp;
74
  }
75 76
  VLOG(4) << "opdesc.Type():" << opdesc.Type();

Y
Yan Chunwei 已提交
77 78 79 80
  param_.Out = scope->FindVar(out_name)->GetMutable<lite::Tensor>();
  return true;
}

M
mapingshuo 已提交
81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119
// #ifdef LITE_WITH_TRAIN

// bool ActivationGradOp::CheckShape() const {
//   CHECK_OR_FALSE(param_.X_grad);
//   CHECK_OR_FALSE(param_.Out_grad);
//   return true;
// }

// bool ActivationGradOp::InferShape() const {
//   param_.X_grad->Resize(param_.Out_grad->dims());
//   return true;
// }

// bool ActivationGradOp::AttachImpl(const cpp::OpDesc& opdesc,
//                                   lite::Scope* scope) {
//   auto Out_grad_name = opdesc.Input(framework::GradVarName("Out")).front();
//   auto X_grad_name = opdesc.Output(framework::GradVarName("X")).front();

//   param_.Out_grad = GetVar<lite::Tensor>(scope, Out_grad_name);
//   param_.X_grad = GetMutableVar<Tensor>(scope, X_grad_name);

//   if (opdesc.HasInput("X")) {
//     auto X_name = opdesc.Input("X").front();
//     param_.X = GetVar<lite::Tensor>(scope, X_name);
//   } else {
//     param_.X = param_.X_grad;
//   }

//   if (opdesc.HasInput("Out")) {
//     auto Out_name = opdesc.Input("Out").front();
//     param_.Out = GetVar<lite::Tensor>(scope, Out_name);
//   } else {
//     param_.Out = param_.Out_grad;
//   }

//   return true;
// }

// #endif
Y
Yan Chunwei 已提交
120 121 122 123 124 125 126 127 128 129 130 131 132 133

}  // namespace operators
}  // namespace lite
}  // namespace paddle
REGISTER_LITE_OP(square, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(relu, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(leaky_relu, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(relu_clipped, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(prelu, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(sigmoid, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(tanh, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(swish, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(relu6, paddle::lite::operators::ActivationOp);
REGISTER_LITE_OP(log, paddle::lite::operators::ActivationOp);
Y
Yan Chunwei 已提交
134
REGISTER_LITE_OP(exp, paddle::lite::operators::ActivationOp);
135
REGISTER_LITE_OP(floor, paddle::lite::operators::ActivationOp);
136
REGISTER_LITE_OP(hard_sigmoid, paddle::lite::operators::ActivationOp);
137
REGISTER_LITE_OP(sqrt, paddle::lite::operators::ActivationOp);
J
juncaipeng 已提交
138
REGISTER_LITE_OP(rsqrt, paddle::lite::operators::ActivationOp);
139
REGISTER_LITE_OP(softsign, paddle::lite::operators::ActivationOp);
140
REGISTER_LITE_OP(gelu, paddle::lite::operators::ActivationOp);
Y
Yan Chunwei 已提交
141

M
mapingshuo 已提交
142 143 144
// #ifdef LITE_WITH_TRAIN
// REGISTER_LITE_OP(square_grad, paddle::lite::operators::ActivationGradOp);
// #endif