PaddleMobile.mm 5.1 KB
Newer Older
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
L
liuruilong 已提交
2

3 4 5
 Licensed under the Apache License, Version 2.0 (the "License");
 you may not use this file except in compliance with the License.
 You may obtain a copy of the License at
L
liuruilong 已提交
6

7
 http://www.apache.org/licenses/LICENSE-2.0
L
liuruilong 已提交
8

9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64
 Unless required by applicable law or agreed to in writing, software
 distributed under the License is distributed on an "AS IS" BASIS,
 WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
 See the License for the specific language governing permissions and
 limitations under the License. */

#import "PaddleMobile.h"
#import "op_symbols.h"
#import "io/paddle_mobile.h"

#import <memory>
#import <vector>

@interface  PaddleMobile()
{
  paddle_mobile::PaddleMobile<paddle_mobile::CPU, paddle_mobile::Precision::FP32> *pam_;
  BOOL loaded_;
}
@end

@implementation PaddleMobile

static std::mutex shared_mutex;

- (instancetype)init {
  if (self = [super init]) {
    pam_ = new paddle_mobile::PaddleMobile<paddle_mobile::CPU, paddle_mobile::Precision::FP32>();
  }
  return self;
}

- (void)dealloc {
  if (pam_) {
    delete pam_;
  }
}

+ (instancetype)sharedInstance{
  static dispatch_once_t onceToken;
  static id sharedManager = nil;
  dispatch_once(&onceToken, ^{
    sharedManager = [[[self class] alloc] init];
  });
  return sharedManager;
}

- (BOOL)load:(NSString *)modelPath andWeightsPath:(NSString *)weighsPath{
  std::string model_path_str = std::string([modelPath UTF8String]);
  std::string weights_path_str = std::string([weighsPath UTF8String]);
  if (loaded_ = pam_->Load(model_path_str, weights_path_str, false)) {
    return YES;
  } else {
    return NO;
  }
}

L
liuruilong 已提交
65 66 67 68 69 70 71 72 73
- (BOOL)load:(NSString *)modelAndWeightPath{
  std::string model_path_str = std::string([modelAndWeightPath UTF8String]);
  if (loaded_ = pam_->Load(model_path_str)) {
    return YES;
  } else {
    return NO;
  }
}

74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179
-(void)preprocess:(const UInt8 *)input output:(float *)output imageWidth:(int)imageWidth imageHeight:(int)imageHeight imageChannels:(int)imageChannels means:(NSArray<NSNumber *> *)means scale:(float)scale dim:(std::vector<int64_t>)dim{
  if (means == nil) {
    means = @[@0, @0, @0];
  }

  int wanted_input_width = dim[3];
  int wanted_input_height = dim[2];
  int wanted_input_channels = dim[1];

  for (int c = 0; c < wanted_input_channels; ++c) {
    float *out_channel = output + c * wanted_input_height * wanted_input_width;
    for (int y = 0; y < wanted_input_height; ++y) {
      float *out_row = out_channel + y * wanted_input_width;
      for (int x = 0; x < wanted_input_width; ++x) {
        int in_row = (y * imageHeight) / wanted_input_height;
        int in_col = (x * imageWidth) / wanted_input_width;
        const UInt8 *in_pixel = input + (in_row * imageWidth * imageChannels) + (in_col * imageChannels);
        float *out_pos = out_row + x;
        if (c == 0) {
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 1){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }else if (c == 2){
          *out_pos = (in_pixel[c] - means[c].floatValue) * scale;
        }
      }
    }
  }
}

- (NSArray *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim means:(NSArray<NSNumber *> *)means scale:(float)scale{
  std::lock_guard<std::mutex> lock(shared_mutex);
  if (!loaded_) {
    printf("PaddleMobile doesn't be loaded yet");
    return nil;
  }

  if (dim.count != 4) {
    printf("dim must have 4 elements");
    return nil;
  }

  // dim to c++ vector, get numel
  std::vector<int64_t > dim_vec;
  int numel = 1;
  for (int k = 0; k < dim.count; ++k) {
    int d = dim[k].intValue;
    numel *= d;
    dim_vec.push_back(d);
  }

  const int sourceRowBytes = CGImageGetBytesPerRow(image);
  const int image_width = CGImageGetWidth(image);
  const int image_height = CGImageGetHeight(image);
  const int image_channels = 4;
  CGDataProviderRef provider = CGImageGetDataProvider(image);
  CFDataRef cfData = CGDataProviderCopyData(provider);
  const UInt8 *input = CFDataGetBytePtr(cfData);

  // sample image
  float *output = (float *)malloc(numel*sizeof(float));
  [self preprocess:input output:output imageWidth:image_width imageHeight:image_height imageChannels:image_channels means:means scale:scale dim:dim_vec];
  float *dataPointer = nullptr;
  if (nullptr != output) {
    dataPointer = output;
  } else {
    return nil;
  }

  // input
  std::vector<float> predict_input;
  for (int j = 0; j < numel; ++j) {
    predict_input.push_back(dataPointer[j]);
  }

  // predict
  std::vector<float> cpp_result = pam_->Predict(predict_input, dim_vec);

  // result
  long count = 0;
  count = cpp_result.size();
  NSMutableArray *result = [[NSMutableArray alloc] init];
  for (int i = 0; i < count; i++) {
    [result addObject:[NSNumber numberWithFloat:cpp_result[i]]];
  }

  free(output);

  // 待验证
  //  if ([UIDevice currentDevice].systemVersion.doubleValue < 11.0) {
  CFRelease(cfData);
  cfData = NULL;
  //  }

  return result;
}

- (NSArray *)predict:(CGImageRef)image dim:(NSArray<NSNumber *> *)dim {
  [self predict:image dim:dim means:nil scale:1];
}

- (void)clear{
  pam_->Clear();
}

@end