elementwise_ops.cc 6.0 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/kernels/mlu/bridges/graph.h"
#include "lite/kernels/mlu/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace mlu {

std::vector<int64_t> CvtYShape(const Tensor& x, Tensor* y, int axis) {
  auto x_dims = x.dims();
  CHECK_EQ(x_dims.size(), 4UL) << "[MLU] Only support 4-dimension x";
  auto y_dims = y->dims();
  CHECK_GE(x_dims.size(), y_dims.size());

  if (axis < 0) {
    axis += x_dims.size();
  }

  std::vector<int64_t> y_new_shape(y_dims.Vectorize());
  if (y_new_shape.size() == 4UL) {
    return y_new_shape;
  }
  for (int i = 0; i < axis; i++) {
    y_new_shape.insert(y_new_shape.begin(), 1);
  }
  while (y_new_shape.size() < 4) {
    y_new_shape.push_back(1);
  }
  CHECK_EQ(y_new_shape.size(), 4UL);
  return y_new_shape;
}

int ElementwiseConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  auto scope = op->scope();
  VLOG(3) << "[MLU] Converting " + op_type + "...";

  auto x_var_name = op_info->Input("X").front();
  auto y_var_name = op_info->Input("Y").front();
  auto out_var_name = op_info->Output("Out").front();
  auto axis = op_info->GetAttr<int>("axis");

  auto x_tensor = graph->GetNode(x_var_name);
  auto x = scope->FindTensor(x_var_name);
  std::shared_ptr<MLUTensor> y_tensor;
  if (graph->HasNode(y_var_name)) {
    y_tensor = graph->GetNode(y_var_name);
  } else {
    auto y = scope->FindMutableTensor(y_var_name);
    auto y_new_shape = CvtYShape(*x, y, axis);
    // all subgraph input tensor are built at first
    // If we can not find the tensor, it should be const tensor
    y_tensor = graph->AddNode(
        y_var_name, y_new_shape, CNML_CONST, CNML_NCHW, graph->FPType());
    graph->BindConstData(y_var_name, y);
  }

  auto output_tensor = graph->AddNode(out_var_name,
                                      x->dims().Vectorize(),
                                      CNML_TENSOR,
80
                                      CNML_NCHW,
81 82 83 84 85 86 87 88 89 90 91 92
                                      graph->FPType());

  cnmlBaseOp_t elementwise_op;
  if (op_type == "elementwise_add") {
    CNML_CALL(cnmlCreateBroadcastAddOp(&elementwise_op,
                                       x_tensor->mlu_tensor(),
                                       y_tensor->mlu_tensor(),
                                       output_tensor->mlu_tensor()));
  } else if (op_type == "fusion_elementwise_add_activation") {
    auto mid_tensor = graph->AddNode(out_var_name + "_mid",
                                     x->dims().Vectorize(),
                                     CNML_TENSOR,
93
                                     CNML_NCHW,
94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153
                                     graph->FPType());
    CNML_CALL(cnmlCreateBroadcastAddOp(&elementwise_op,
                                       x_tensor->mlu_tensor(),
                                       y_tensor->mlu_tensor(),
                                       mid_tensor->mlu_tensor()));
  } else if (op_type == "elementwise_sub") {
    CNML_CALL(cnmlCreateBroadcastSubOp(&elementwise_op,
                                       x_tensor->mlu_tensor(),
                                       y_tensor->mlu_tensor(),
                                       output_tensor->mlu_tensor()));
  } else if (op_type == "elementwise_mul") {
    CNML_CALL(cnmlCreateBroadcastMultOp(&elementwise_op,
                                        x_tensor->mlu_tensor(),
                                        y_tensor->mlu_tensor(),
                                        output_tensor->mlu_tensor()));
  } else if (op_type == "elementwise_div") {
    CNML_CALL(cnmlCreateRealDivOp(&elementwise_op,
                                  x_tensor->mlu_tensor(),
                                  y_tensor->mlu_tensor(),
                                  output_tensor->mlu_tensor()));
  } else {
    LOG(WARNING) << "[MLU] Unsupported op type: " << op_type;
    return FAILED;
  }

  graph->FuseOp(elementwise_op);
  cnmlBaseOp_t act_op;
  if (op_type == "fusion_elementwise_add_activation") {
    auto mid_tensor = graph->GetNode(out_var_name + "_mid");
    auto type_string = op_info->GetAttr<std::string>("act_type");
    cnmlActiveFunction_t act_type = OpTypeToCNMLActType(type_string);
    CNML_CALL(cnmlCreateActiveOp(&act_op,
                                 act_type,
                                 mid_tensor->mlu_tensor(),
                                 output_tensor->mlu_tensor()));
    graph->FuseOp(act_op);
  }
  return REBUILD_WHEN_SHAPE_CHANGED;
}

}  // namespace mlu
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(elementwise_add,
                         kMLU,
                         paddle::lite::subgraph::mlu::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(fusion_elementwise_add_activation,
                         kMLU,
                         paddle::lite::subgraph::mlu::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_sub,
                         kMLU,
                         paddle::lite::subgraph::mlu::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_mul,
                         kMLU,
                         paddle::lite::subgraph::mlu::ElementwiseConverter);
REGISTER_SUBGRAPH_BRIDGE(elementwise_div,
                         kMLU,
                         paddle::lite::subgraph::mlu::ElementwiseConverter);