box_coder_image_compute.cc 6.7 KB
Newer Older
H
HappyAngel 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <memory>
#include <string>
#include "lite/backends/opencl/cl_half.h"
#include "lite/backends/opencl/cl_image_converter.h"
#include "lite/backends/opencl/cl_include.h"
#include "lite/core/kernel.h"
#include "lite/core/op_registry.h"
#include "lite/kernels/opencl/image_helper.h"
#include "lite/operators/op_params.h"
#include "lite/utils/logging.h"
#include "lite/utils/replace_stl/stream.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace opencl {
class BoxCoderComputeImage : public KernelLite<TARGET(kOpenCL),
                                               PRECISION(kFP16),
                                               DATALAYOUT(kImageDefault)> {
 public:
  using param_t = operators::BoxCoderParam;

  void PrepareForRun() override {
    auto& context = ctx_->As<OpenCLContext>();
    boxcoder_param_ = param_.get_mutable<param_t>();
    if (boxcoder_param_->code_type == "decode_center_size" &&
        boxcoder_param_->box_normalized == true) {
      kernel_func_name_ = "decode_center_size";
    } else {
      printf("This code_type %s doesn't support \n",
             boxcoder_param_->code_type.c_str());
      return;
    }
    CHECK(context.cl_context() != nullptr);
    VLOG(1) << "kernel_func_name_:" << kernel_func_name_;
    context.cl_context()->AddKernel(
        kernel_func_name_, "image/box_coder_kernel.cl", build_options_);
  }

  void Run() override {
    boxcoder_param_ = param_.get_mutable<param_t>();
    const auto& out_dims = boxcoder_param_->proposals->dims();
    auto image_shape = InitImageDimInfoWith(out_dims);

    auto* out_buf =
        boxcoder_param_->proposals->mutable_data<half_t, cl::Image2D>(
            image_shape["width"], image_shape["height"]);

#ifndef LITE_SHUTDOWN_LOG
    VLOG(4) << "boxcoder input shape:  ";

#endif
    const auto* input_priorbox = boxcoder_param_->prior_box;
    const auto* input_priorboxvar = boxcoder_param_->prior_box_var;
    const auto* input_targetbox = boxcoder_param_->target_box;
    const auto& code_type = boxcoder_param_->code_type;
    if (code_type == "decode_center_size") {
      auto* prior_box_image = input_priorbox->data<half_t, cl::Image2D>();
      auto* prior_box_var_image =
          input_priorboxvar->data<half_t, cl::Image2D>();
      auto* target_box_image = input_targetbox->data<half_t, cl::Image2D>();

      int new_dims[4] = {1, 1, 1, 1};
      for (int i = 0; i < out_dims.size(); i++) {
        new_dims[4 - out_dims.size() + i] = out_dims[i];
      }
      auto& context = ctx_->As<OpenCLContext>();
      CHECK(context.cl_context() != nullptr);
      STL::stringstream kernel_key;
      kernel_key << kernel_func_name_ << build_options_;
      auto kernel = context.cl_context()->GetKernel(kernel_key.str());

      auto default_work_size =
          DefaultWorkSize(out_dims,
                          DDim(std::vector<DDim::value_type>{
                              static_cast<int64_t>(image_shape["width"]),
                              static_cast<int64_t>(image_shape["height"])}));

      int out_C = new_dims[1];
      int out_H = new_dims[2];
#ifndef LITE_SHUTDOWN_LOG
      VLOG(4) << TargetToStr(boxcoder_param_->proposals->target());
      VLOG(4) << "output shape: " << out_dims[0] << ", " << out_dims[1] << ", "
              << out_dims[2] << ", " << out_dims[3];
      VLOG(4) << "image_shape(w,h):" << image_shape["width"] << " "
              << image_shape["height"];
      VLOG(4) << "out_C = " << out_C;
      VLOG(4) << "out_H = " << out_H;
      VLOG(4) << "default_work_size = " << default_work_size[0] << ", "
              << default_work_size[1] << ", " << default_work_size[2];
#endif
      int arg_idx = 0;
      cl_int status = kernel.setArg(arg_idx++, *prior_box_image);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, *prior_box_var_image);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, *target_box_image);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, *out_buf);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, out_C);
      CL_CHECK_FATAL(status);
      status = kernel.setArg(arg_idx++, out_H);
      CL_CHECK_FATAL(status);
      auto global_work_size =
          cl::NDRange{static_cast<cl::size_type>(default_work_size[0]),
                      static_cast<cl::size_type>(default_work_size[2])};

      status = context.cl_context()->GetCommandQueue().enqueueNDRangeKernel(
          kernel,
          cl::NullRange,
          global_work_size,
          cl::NullRange,
          nullptr,
          event_.get());
      CL_CHECK_FATAL(status);
      context.cl_wait_list()->emplace(out_buf, event_);

#ifndef LITE_SHUTDOWN_LOG
      VLOG(4) << "global_work_size:[2D]:" << global_work_size[0] << " "
              << global_work_size[1];
#endif
    }
  }
  std::string doc() { return "Boxcoder using cl::Image, kFP16"; }

  param_t* boxcoder_param_{nullptr};
  std::string kernel_func_name_{};
  std::string build_options_{" -DCL_DTYPE_half"};
  std::shared_ptr<cl::Event> event_{new cl::Event};
};

}  // namespace opencl
}  // namespace kernels
}  // namespace lite
}  // namespace paddle
typedef paddle::lite::kernels::opencl::BoxCoderComputeImage BoxCoder_image;

REGISTER_LITE_KERNEL(
    box_coder, kOpenCL, kFP16, kImageDefault, BoxCoder_image, ImageDefault)
    .BindInput("PriorBox",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("PriorBoxVar",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindInput("TargetBox",
               {LiteType::GetTensorTy(TARGET(kOpenCL),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kImageDefault))})
    .BindOutput("OutputBox",
                {LiteType::GetTensorTy(TARGET(kOpenCL),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kImageDefault))})
    .Finalize();