prior_box_op.cc 12.7 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <bmcompiler_if.h>
#include "lite/kernels/bm/bridges/graph.h"
#include "lite/kernels/bm/bridges/utility.h"
#include "lite/kernels/npu/bridges/registry.h"

namespace paddle {
namespace lite {
namespace subgraph {
namespace bm {

typedef struct __tag_st_priorbox_param {
  std::vector<float> min_sizes;
  std::vector<float> max_sizes;
  std::vector<float> aspect_ratios;
  std::vector<float> variances;
  float step_w;
  float step_h;
  float offset;
  int32_t img_w;
  int32_t img_h;
  int32_t prior_num;
  bool min_max_aspect_ratios_order;
  bool clip;
  bool flip;
} st_priorbox_param;

inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
                               std::vector<float>* output_aspect_ratior) {
  constexpr float epsilon = 1e-6;
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
      output_aspect_ratior->push_back(ar);
      if (flip) {
        output_aspect_ratior->push_back(1.0f / ar);
      }
    }
  }
}

float* compute_priorbox_kernel(OpLite* op, st_priorbox_param* param) {
  auto op_info = op->op_info();
  auto scope = op->scope();
  // inputs
  auto in_var_name = op_info->Input("Input").front();
  auto in = scope->FindVar(in_var_name)->GetMutable<lite::Tensor>();
  auto in_dims = in->dims();
  auto img_var_name = op_info->Input("Image").front();
  auto img = scope->FindVar(img_var_name)->GetMutable<lite::Tensor>();
  auto img_dims = img->dims();
  // outputs
  auto boxes_var_name = op_info->Output("Boxes").front();
  auto boxes = scope->FindVar(boxes_var_name)->GetMutable<lite::Tensor>();
  auto var_var_name = op_info->Output("Variances").front();
  auto var = scope->FindVar(var_var_name)->GetMutable<lite::Tensor>();
  std::vector<float> expand_aspect_ratios;
  ExpandAspectRatios(param->aspect_ratios, param->flip, &expand_aspect_ratios);
  param->aspect_ratios.clear();
  for (size_t i = 0; i < expand_aspect_ratios.size(); i++) {
    param->aspect_ratios.push_back(expand_aspect_ratios[i]);
  }
  param->prior_num = param->aspect_ratios.size() * param->min_sizes.size();
  if (param->max_sizes.size() > 0) {
    param->prior_num += param->max_sizes.size();
  }
  int32_t win1 = in_dims[3];
  int32_t hin1 = in_dims[2];
  DDim shape_out({hin1, win1, param->prior_num, 4});
  boxes->Resize(shape_out);
  var->Resize(shape_out);
  // boxes->mutable_data<float>();
  // var->mutable_data<float>();
  float* cpu_data =
      static_cast<float*>(malloc(sizeof(float) * boxes->data_size() * 2));
  CHECK(cpu_data != nullptr);
  const int32_t width = in_dims[3];
  const int32_t height = in_dims[2];
  int32_t img_width = param->img_w;
  int32_t img_height = param->img_h;
  if (img_width == 0 || img_height == 0) {
    img_width = img_dims[3];
    img_height = img_dims[2];
  }
  float step_w = param->step_w;
  float step_h = param->step_h;
  if (step_w == 0.f || step_h == 0.f) {
    step_w = static_cast<float>(img_width) / width;
    step_h = static_cast<float>(img_height) / height;
  }
  float offset = param->offset;
  int32_t channel_size = height * width * param->prior_num * 4;
  int32_t idx = 0;
  ///////////////////////////////////////////////////////////////////////
  for (int32_t h = 0; h < height; ++h) {
    for (int32_t w = 0; w < width; ++w) {
      float center_x = (w + offset) * step_w;
      float center_y = (h + offset) * step_h;
      float box_width = 0.f;
      float box_height = 0.f;
      float* min_buf = reinterpret_cast<float*>(malloc(sizeof(float) * 4));
      float* max_buf = reinterpret_cast<float*>(malloc(sizeof(float) * 4));
      float* com_buf = reinterpret_cast<float*>(
          malloc(sizeof(float) * expand_aspect_ratios.size() * 4));
      CHECK(min_buf != nullptr);
      CHECK(max_buf != nullptr);
      CHECK(com_buf != nullptr);
      // LOG(INFO) << "the number of min_size is " << min_sizes_.size();
      for (size_t s = 0; s < param->min_sizes.size(); ++s) {
        int32_t min_idx = 0;
        int32_t max_idx = 0;
        int32_t com_idx = 0;
        int32_t min_size = param->min_sizes[s];
        //! first prior: aspect_ratio = 1, size = min_size
        box_width = box_height = min_size;
        //! xmin
        min_buf[min_idx++] = (center_x - box_width / 2.f) / img_width;
        //! ymin
        min_buf[min_idx++] = (center_y - box_height / 2.f) / img_height;
        //! xmax
        min_buf[min_idx++] = (center_x + box_width / 2.f) / img_width;
        //! ymax
        min_buf[min_idx++] = (center_y + box_height / 2.f) / img_height;
        if (param->max_sizes.size() > 0) {
          int max_size = param->max_sizes[s];
          //! second prior: aspect_ratio = 1, size = sqrt(min_size * max_size)
          box_width = box_height = sqrtf(min_size * max_size);
          //! xmin
          max_buf[max_idx++] = (center_x - box_width / 2.f) / img_width;
          //! ymin
          max_buf[max_idx++] = (center_y - box_height / 2.f) / img_height;
          //! xmax
          max_buf[max_idx++] = (center_x + box_width / 2.f) / img_width;
          //! ymax
          max_buf[max_idx++] = (center_y + box_height / 2.f) / img_height;
        }
        //! rest of priors
        for (size_t r = 0; r < expand_aspect_ratios.size(); ++r) {
          float ar = expand_aspect_ratios[r];
          if (fabs(ar - 1.) < 1e-6) {
            continue;
          }
          box_width = min_size * sqrt(ar);
          box_height = min_size / sqrt(ar);
          //! xmin
          com_buf[com_idx++] = (center_x - box_width / 2.f) / img_width;
          //! ymin
          com_buf[com_idx++] = (center_y - box_height / 2.f) / img_height;
          //! xmax
          com_buf[com_idx++] = (center_x + box_width / 2.f) / img_width;
          //! ymax
          com_buf[com_idx++] = (center_y + box_height / 2.f) / img_height;
        }
        if (param->min_max_aspect_ratios_order) {
          memcpy(cpu_data + idx, min_buf, sizeof(float) * min_idx);
          idx += min_idx;
          memcpy(cpu_data + idx, max_buf, sizeof(float) * max_idx);
          idx += max_idx;
          memcpy(cpu_data + idx, com_buf, sizeof(float) * com_idx);
          idx += com_idx;
        } else {
          memcpy(cpu_data + idx, com_buf, sizeof(float) * com_idx);
          idx += com_idx;
          memcpy(cpu_data + idx, max_buf, sizeof(float) * max_idx);
          idx += max_idx;
        }
      }
      free(min_buf);
      free(max_buf);
      free(com_buf);
    }
  }
  //! clip the prior's coordidate such that it is within [0, 1]
  if (param->clip) {
    for (int32_t d = 0; d < channel_size; ++d) {
      cpu_data[d] = std::min(std::max(cpu_data[d], 0.f), 1.f);
    }
  }
  //! set the variance.
  float* ptr = cpu_data + channel_size;
  int count = 0;
  for (int32_t h = 0; h < height; ++h) {
    for (int32_t w = 0; w < width; ++w) {
      for (int32_t i = 0; i < param->prior_num; ++i) {
        for (int j = 0; j < 4; ++j) {
          ptr[count] = param->variances[j];
          ++count;
        }
      }
    }
  }
  return cpu_data;
}

int PriorBoxConverter(void* ctx, OpLite* op, KernelBase* kernel) {
  CHECK(ctx != nullptr);
  CHECK(op != nullptr);
  auto graph = static_cast<Graph*>(ctx);
  auto scope = op->scope();
  auto op_info = op->op_info();
  auto op_type = op_info->Type();
  // inputs
  auto in_var_name = op_info->Input("Input").front();
  auto in = scope->FindVar(in_var_name)->GetMutable<lite::Tensor>();
  auto in_dims = in->dims();
  auto img_var_name = op_info->Input("Image").front();
  auto img = scope->FindVar(img_var_name)->GetMutable<lite::Tensor>();
  auto img_dims = img->dims();
  std::vector<int32_t> i_input_shape_data(in_dims.size());
  for (size_t i = 0; i < in_dims.size(); i++) {
    i_input_shape_data[i] = static_cast<int32_t>(in_dims[i]);
  }
  // outputs
  auto boxes_var_name = op_info->Output("Boxes").front();
  auto boxes = scope->FindVar(boxes_var_name)->GetMutable<lite::Tensor>();
  auto var_var_name = op_info->Output("Variances").front();
  auto unique_op_name = lite::subgraph::bm::UniqueName(op_type);
  // param
  st_priorbox_param param;
  param.clip = op_info->GetAttr<bool>("clip");
  param.min_sizes = op_info->GetAttr<std::vector<float>>("min_sizes");
  param.max_sizes = op_info->GetAttr<std::vector<float>>("max_sizes");
  param.aspect_ratios = op_info->GetAttr<std::vector<float>>("aspect_ratios");
  param.variances = op_info->GetAttr<std::vector<float>>("variances");
  param.offset = op_info->GetAttr<float>("offset");
  if (op_info->HasAttr("flip")) {
    param.flip = op_info->GetAttr<bool>("flip");
  }
  if (op_info->HasAttr("img_w")) {
    param.img_w = op_info->GetAttr<int32_t>("img_w");
  }
  if (op_info->HasAttr("img_h")) {
    param.img_h = op_info->GetAttr<int32_t>("img_h");
  }
  if (op_info->HasAttr("step_w")) {
    param.step_w = op_info->GetAttr<float>("step_w");
  }
  if (op_info->HasAttr("step_h")) {
    param.step_h = op_info->GetAttr<float>("step_h");
  }
  if (op_info->HasAttr("prior_num")) {
    param.prior_num = op_info->GetAttr<int32_t>("prior_num");
  }
  if (op_info->HasAttr("min_max_aspect_ratios_order")) {
    param.min_max_aspect_ratios_order =
        op_info->GetAttr<bool>("min_max_aspect_ratios_order");
  }
  float* cpu_data = compute_priorbox_kernel(op, &param);
  compute_priorbox_kernel(op, param);
  auto boxes_dims = boxes->dims();
  std::vector<int32_t> i_pri_out_shape_data(boxes_dims.size());
  for (size_t i = 0; i < boxes_dims.size(); i++) {
    i_pri_out_shape_data[i] = static_cast<int32_t>(boxes_dims[i]);
  }
  i_pri_out_shape_data[0] *= 2;
  add_priorbox_layer(graph->GetCompilerHandle(),
                     const_cast<const int*>(&i_input_shape_data[0]),
                     in_dims.size(),
                     static_cast<const char*>(in_var_name.c_str()),
                     const_cast<const int*>(&i_pri_out_shape_data[0]),
                     boxes_dims.size(),
                     static_cast<const char*>(unique_op_name.c_str()),
                     static_cast<const float*>(cpu_data),
                     param.min_sizes.size(),
                     const_cast<const float*>(&param.min_sizes[0]),
                     param.max_sizes.size(),
                     const_cast<const float*>(&param.max_sizes[0]),
                     param.aspect_ratios.size(),
                     const_cast<const float*>(&param.aspect_ratios[0]),
                     static_cast<int>(param.flip),
                     static_cast<int>(param.clip),
                     param.variances.size(),
                     const_cast<const float*>(&param.variances[0]),
                     param.img_h,
                     param.img_w,
                     param.step_h,
                     param.step_w,
                     param.offset);
  std::vector<int32_t> i_output_shape_data(boxes_dims.size());
  for (size_t i = 0; i < boxes_dims.size(); i++) {
    i_output_shape_data[i] = static_cast<int32_t>(boxes_dims[i]);
  }
  int32_t* shape[2];
  int dim[2];
  const char* name[2];
  dim[0] = boxes_dims.size();
  dim[1] = boxes_dims.size();
  name[0] = static_cast<const char*>(boxes_var_name.c_str());
  name[1] = static_cast<const char*>(var_var_name.c_str());
  shape[0] = &i_output_shape_data[0];
  shape[1] = &i_output_shape_data[0];
  int split_size = 2;
  add_tf_split_layer(graph->GetCompilerHandle(),
                     const_cast<const int*>(&i_pri_out_shape_data[0]),
                     boxes_dims.size(),
                     static_cast<const char*>(unique_op_name.c_str()),
                     2,
                     shape,
                     dim,
                     name,
                     boxes_dims.size(),
                     0,
                     &split_size,
                     0);
  graph->AddNode(boxes_var_name);
  graph->AddNode(var_var_name);
  return SUCCESS;
}

}  // namespace bm
}  // namespace subgraph
}  // namespace lite
}  // namespace paddle

REGISTER_SUBGRAPH_BRIDGE(prior_box,
                         kBM,
                         paddle::lite::subgraph::bm::PriorBoxConverter);