ssd_detection.cc 7.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <iostream>
#include <vector>
#include "opencv2/core.hpp"
#include "opencv2/imgcodecs.hpp"
#include "opencv2/imgproc.hpp"
#include "paddle_api.h"  // NOLINT

using namespace paddle::lite_api;  // NOLINT

struct Object {
  int batch_id;
  cv::Rect rec;
  int class_id;
  float prob;
};

int64_t ShapeProduction(const shape_t& shape) {
  int64_t res = 1;
  for (auto i : shape) res *= i;
  return res;
}

const char* class_names[] = {
    "background", "aeroplane",   "bicycle", "bird",  "boat",
    "bottle",     "bus",         "car",     "cat",   "chair",
    "cow",        "diningtable", "dog",     "horse", "motorbike",
    "person",     "pottedplant", "sheep",   "sofa",  "train",
    "tvmonitor"};

// fill tensor with mean and scale and trans layout: nhwc -> nchw, neon speed up
void neon_mean_scale(const float* din,
                     float* dout,
                     int size,
                     const std::vector<float> mean,
                     const std::vector<float> scale) {
  if (mean.size() != 3 || scale.size() != 3) {
    std::cerr << "[ERROR] mean or scale size must equal to 3\n";
    exit(1);
  }
  float32x4_t vmean0 = vdupq_n_f32(mean[0]);
  float32x4_t vmean1 = vdupq_n_f32(mean[1]);
  float32x4_t vmean2 = vdupq_n_f32(mean[2]);
  float32x4_t vscale0 = vdupq_n_f32(1.f / scale[0]);
  float32x4_t vscale1 = vdupq_n_f32(1.f / scale[1]);
  float32x4_t vscale2 = vdupq_n_f32(1.f / scale[2]);

  float* dout_c0 = dout;
  float* dout_c1 = dout + size;
  float* dout_c2 = dout + size * 2;

  int i = 0;
  for (; i < size - 3; i += 4) {
    float32x4x3_t vin3 = vld3q_f32(din);
    float32x4_t vsub0 = vsubq_f32(vin3.val[0], vmean0);
    float32x4_t vsub1 = vsubq_f32(vin3.val[1], vmean1);
    float32x4_t vsub2 = vsubq_f32(vin3.val[2], vmean2);
    float32x4_t vs0 = vmulq_f32(vsub0, vscale0);
    float32x4_t vs1 = vmulq_f32(vsub1, vscale1);
    float32x4_t vs2 = vmulq_f32(vsub2, vscale2);
    vst1q_f32(dout_c0, vs0);
    vst1q_f32(dout_c1, vs1);
    vst1q_f32(dout_c2, vs2);

    din += 12;
    dout_c0 += 4;
    dout_c1 += 4;
    dout_c2 += 4;
  }
  for (; i < size; i++) {
    *(dout_c0++) = (*(din++) - mean[0]) * scale[0];
85 86
    *(dout_c1++) = (*(din++) - mean[1]) * scale[1];
    *(dout_c2++) = (*(din++) - mean[2]) * scale[2];
87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190
  }
}

void pre_process(const cv::Mat& img, int width, int height, float* data) {
  cv::Mat rgb_img;
  cv::cvtColor(img, rgb_img, cv::COLOR_BGR2RGB);
  cv::resize(rgb_img, rgb_img, cv::Size(width, height), 0.f, 0.f);
  cv::Mat imgf;
  rgb_img.convertTo(imgf, CV_32FC3, 1 / 255.f);
  std::vector<float> mean = {0.5f, 0.5f, 0.5f};
  std::vector<float> scale = {0.5f, 0.5f, 0.5f};
  const float* dimg = reinterpret_cast<const float*>(imgf.data);
  neon_mean_scale(dimg, data, width * height, mean, scale);
}

std::vector<Object> detect_object(const float* data,
                                  int count,
                                  float thresh,
                                  cv::Mat& image) {  // NOLINT
  if (data == nullptr) {
    std::cerr << "[ERROR] data can not be nullptr\n";
    exit(1);
  }
  std::vector<Object> rect_out;
  for (int iw = 0; iw < count; iw++) {
    int oriw = image.cols;
    int orih = image.rows;
    if (data[1] > thresh && static_cast<int>(data[0]) > 0) {
      Object obj;
      int x = static_cast<int>(data[2] * oriw);
      int y = static_cast<int>(data[3] * orih);
      int w = static_cast<int>(data[4] * oriw) - x;
      int h = static_cast<int>(data[5] * orih) - y;
      cv::Rect rec_clip =
          cv::Rect(x, y, w, h) & cv::Rect(0, 0, image.cols, image.rows);
      obj.batch_id = 0;
      obj.class_id = static_cast<int>(data[0]);
      obj.prob = data[1];
      obj.rec = rec_clip;
      if (w > 0 && h > 0 && obj.prob <= 1) {
        rect_out.push_back(obj);
        cv::rectangle(image, rec_clip, cv::Scalar(0, 0, 255), 2, cv::LINE_AA);
        std::string str_prob = std::to_string(obj.prob);
        std::string text = std::string(class_names[obj.class_id]) + ": " +
                           str_prob.substr(0, str_prob.find(".") + 4);
        int font_face = cv::FONT_HERSHEY_COMPLEX_SMALL;
        double font_scale = 1.f;
        int thickness = 2;
        cv::Size text_size =
            cv::getTextSize(text, font_face, font_scale, thickness, nullptr);
        float new_font_scale = w * 0.35 * font_scale / text_size.width;
        text_size = cv::getTextSize(
            text, font_face, new_font_scale, thickness, nullptr);
        cv::Point origin;
        origin.x = x + 10;
        origin.y = y + text_size.height + 10;
        cv::putText(image,
                    text,
                    origin,
                    font_face,
                    new_font_scale,
                    cv::Scalar(0, 255, 255),
                    thickness,
                    cv::LINE_AA);

        std::cout << "detection, image size: " << image.cols << ", "
                  << image.rows
                  << ", detect object: " << class_names[obj.class_id]
                  << ", score: " << obj.prob << ", location: x=" << x
                  << ", y=" << y << ", width=" << w << ", height=" << h
                  << std::endl;
      }
    }
    data += 6;
  }
  return rect_out;
}

void RunModel(std::string model_dir, std::string img_path) {
  // 1. Set MobileConfig
  MobileConfig config;
  config.set_model_dir(model_dir);

  // 2. Create PaddlePredictor by MobileConfig
  std::shared_ptr<PaddlePredictor> predictor =
      CreatePaddlePredictor<MobileConfig>(config);

  // 3. Prepare input data from image
  std::unique_ptr<Tensor> input_tensor(std::move(predictor->GetInput(0)));
  const int in_width = 300;
  const int in_height = 300;
  input_tensor->Resize({1, 3, in_height, in_width});
  auto* data = input_tensor->mutable_data<float>();
  cv::Mat img = imread(img_path, cv::IMREAD_COLOR);
  pre_process(img, in_width, in_height, data);

  // 4. Run predictor
  predictor->Run();

  // 5. Get output and post process
  std::unique_ptr<const Tensor> output_tensor(
      std::move(predictor->GetOutput(0)));
  auto* outptr = output_tensor->data<float>();
  auto shape_out = output_tensor->shape();
191
  int64_t cnt = ShapeProduction(shape_out);
192
  auto rec_out = detect_object(outptr, static_cast<int>(cnt / 6), 0.6f, img);
193 194 195 196
  int start = img_path.find_last_of("/");
  int end = img_path.find_last_of(".");
  std::string img_name = img_path.substr(start + 1, end - start - 1);
  std::string result_name = img_name + "_ssd_detection_result.jpg";
197 198 199 200 201 202 203 204 205 206 207 208 209
  cv::imwrite(result_name, img);
}

int main(int argc, char** argv) {
  if (argc < 3) {
    std::cerr << "[ERROR] usage: " << argv[0] << " model_dir image_path\n";
    exit(1);
  }
  std::string model_dir = argv[1];
  std::string img_path = argv[2];
  RunModel(model_dir, img_path);
  return 0;
}