program.cc 10.5 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/core/program.h"
16
#include <unordered_map>
Y
Yan Chunwei 已提交
17 18 19
#include "lite/model_parser/cpp/block_desc.h"
#include "lite/model_parser/cpp/op_desc.h"
#include "lite/model_parser/cpp/var_desc.h"
J
juncaipeng 已提交
20
#include "lite/operators/conditional_block_op.h"
21
#include "lite/operators/subgraph_op.h"
Y
Yan Chunwei 已提交
22 23 24 25 26 27 28 29 30 31 32 33 34
#include "lite/operators/while_op.h"
#ifdef LITE_WITH_PROFILE
#include "lite/core/profile/precision_profiler.h"
#endif

namespace paddle {
namespace lite {

void RuntimeProgram::SaveOpInfosToProgram(cpp::ProgramDesc* desc) {
  CHECK(desc);
  // NOTE: RuntimeProgram do not has all meta info, so save model just update
  // upon origin model
  CHECK(desc->BlocksSize());
35 36
  auto main_block = desc->GetBlock<cpp::BlockDesc>(0);
  main_block->ClearOps();
Y
Yan Chunwei 已提交
37
  for (auto& node : instructions_) {
38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60
    auto op_type = node.op()->op_info()->Type();
    if (op_type == "subgraph") {
      auto subgraph_op = const_cast<operators::SubgraphOp*>(
          static_cast<const operators::SubgraphOp*>(node.op()));
      int sub_block_idx = subgraph_op->op_info()->GetAttr<int32_t>("sub_block");
      if (sub_block_idx < 0) {
        // It's a new subgraph op when its sub_block_idx < 0, Now we add its
        // subblock desc to the program desc, Then update its sub_block_idx to
        // the index of block desc of the program desc.
        sub_block_idx = desc->BlocksSize();
        auto sub_block_desc = subgraph_op->GetSubBlock();
        CHECK(sub_block_desc);
        auto new_block_desc = desc->AddBlock<cpp::BlockDesc>();
        *new_block_desc = *sub_block_desc;
        delete sub_block_desc;
        subgraph_op->mutable_op_info()->SetAttr<int32_t>("sub_block",
                                                         sub_block_idx);
        subgraph_op->SetSubBlock(new_block_desc);
        // Update main block desc after a new subblock desc is added
        main_block = desc->GetBlock<cpp::BlockDesc>(0);
      }
    }
    auto op = main_block->AddOp<cpp::OpDesc>();
Y
Yan Chunwei 已提交
61 62 63 64 65
    *op = *node.op()->op_info();
    op->SetAttr(kKernelTypeAttr, node.kernel()->SerializedKernelType());
  }
}

66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
// `UpdateVarsOfProgram` will remove unused var_descs and add new created
// vars' descs in the block 0. Now, the type of a new created var can only
// be LOD_TENSOR.
void RuntimeProgram::UpdateVarsOfProgram(cpp::ProgramDesc* desc) {
  CHECK(desc);
  CHECK(desc->BlocksSize());
  std::unordered_map<std::string, cpp::VarDesc> origin_var_maps;
  auto& main_block = *desc->GetBlock<cpp::BlockDesc>(0);
  auto var_size = main_block.VarsSize();
  for (int i = 0; i < var_size; i++) {
    auto v = main_block.GetVar<cpp::VarDesc>(i);
    auto name = v->Name();
    origin_var_maps.emplace(name, *v);
  }

  main_block.ClearVars();
  for (auto& node : instructions_) {
    auto* op = const_cast<lite::OpLite*>(node.op());
    auto* kernel = node.kernel();
    auto* scope = op->scope();
    auto in_names = op->op_info()->input_names();
    auto out_names = op->op_info()->output_names();
    for (auto& in_name : in_names) {
      auto it = origin_var_maps.find(in_name);
      if (it != origin_var_maps.end()) {
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName((it->second).Name());
        v->SetType((it->second).GetType());
        v->SetPersistable((it->second).Persistable());
      } else {
        // New created vars must be LOD_TENSOR
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName(in_name);
        v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
        std::string in_arg_name;
        op->op_info()->GetInputArgname(in_name, &in_arg_name);
        auto type = kernel->GetInputDeclType(in_arg_name);
        if (type->IsTensor()) {
          auto tensor = scope->FindVar(in_name)->GetMutable<Tensor>();
          v->SetPersistable(tensor->persistable());
        } else {
          CHECK(false) << "unsupported var type";
        }
      }
    }

    for (auto& out_name : out_names) {
      auto it = origin_var_maps.find(out_name);
      if (it != origin_var_maps.end()) {
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName((it->second).Name());
        v->SetType((it->second).GetType());
        v->SetPersistable((it->second).Persistable());
      } else {
        // New created vars must be LOD_TENSOR
        auto* v = main_block.AddVar<cpp::VarDesc>();
        v->SetName(out_name);
        v->SetType(cpp::VarDesc::Type::LOD_TENSOR);
        std::string out_arg_name;
        op->op_info()->GetOutputArgname(out_name, &out_arg_name);
        auto type = kernel->GetOutputDeclType(out_arg_name);
        if (type->IsTensor()) {
          auto tensor = scope->FindVar(out_name)->GetMutable<Tensor>();
          v->SetPersistable(tensor->persistable());
        } else {
          CHECK(false) << "unsupported var type";
        }
      }
    }
  }
}

Y
Yan Chunwei 已提交
138 139
void RuntimeProgram::Run() {
  for (auto& inst : instructions_) {
140
#ifndef LITE_WITH_FPGA
141
    if (inst.is_feed_fetch_op()) continue;
T
tienfeek 已提交
142
    std::string op_type = inst.op()->op_info()->Type();
143
#endif
Y
Yan Chunwei 已提交
144 145
    inst.Run();
#ifdef LITE_WITH_PROFILE
146
#ifdef LITE_WITH_PRECISION_PROFILE
147
#ifndef LITE_WITH_FPGA
Y
Yan Chunwei 已提交
148
    LITE_PRECISION_PROFILE(inst)
149
#endif
150 151
#endif  // LITE_WITH_PRECISION_PROFILE
#endif  // LITE_WITH_PROFILE
Y
Yan Chunwei 已提交
152
  }
153
#ifdef LITE_WITH_PROFILE
154
  LOG(INFO) << "\n" << profiler_.Summary(profile::Type::kDispatch, false, 0);
155
#endif  // LITE_WITH_PROFILE
Y
Yan Chunwei 已提交
156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171
}

void Program::Build(const cpp::ProgramDesc& prog) {
  CHECK(ops_.empty()) << "Executor duplicate Build found";

  // Create operators.
  auto program = prog;
  CHECK(program.BlocksSize());
  auto& main_block = *program.GetBlock<cpp::BlockDesc>(0);
  for (size_t i = 0; i < main_block.OpsSize(); ++i) {
    auto& op_desc = *main_block.GetOp<cpp::OpDesc>(i);
    auto op_type = op_desc.Type();
    // if (op_type == "feed" || op_type == "fetch") continue;
    VLOG(4) << "create Op [" << op_type << "]";
    auto op = LiteOpRegistry::Global().Create(op_type);
    CHECK(op) << "no Op found for " << op_type;
172 173
    if (op_type == "while" || op_type == "conditional_block" ||
        op_type == "subgraph") {
174
      auto sub_block_idx = op_desc.GetAttr<int32_t>("sub_block");
175 176 177 178
      CHECK(sub_block_idx >= 0 && sub_block_idx < program.BlocksSize())
          << "Invalid attribute sub_block(" << sub_block_idx << ") for "
          << op_type;
      auto sub_block_desc =
Y
Yan Chunwei 已提交
179 180
          const_cast<cpp::ProgramDesc&>(prog).GetBlock<cpp::BlockDesc>(
              sub_block_idx);
181
      CHECK(sub_block_desc);
J
juncaipeng 已提交
182
      if (op_type == "while") {
183 184
        static_cast<operators::WhileOpLite*>(op.get())->SetSubBlock(
            sub_block_desc);
J
juncaipeng 已提交
185 186
      } else if (op_type == "conditional_block") {
        static_cast<operators::ConditionalBlockOpLite*>(op.get())->SetSubBlock(
187 188 189 190
            sub_block_desc);
      } else if (op_type == "subgraph") {
        static_cast<operators::SubgraphOp*>(op.get())->SetSubBlock(
            sub_block_desc);
J
juncaipeng 已提交
191
      }
Y
Yan Chunwei 已提交
192 193 194 195 196 197 198 199 200 201 202 203 204 205 206
    }
    ops_.emplace_back(std::move(op));
    ops_.back()->Attach(op_desc, exec_scope_);
  }
}

void Program::PrepareWorkspace(const cpp::ProgramDesc& prog) {
  CHECK(!exec_scope_) << "Duplicate PrepareWorkspace found";
  exec_scope_ = &scope_->NewScope();
  // Create Feed and Fetch var.
  scope_->Var("feed")->GetMutable<std::vector<lite::Tensor>>();
  scope_->Var("fetch")->GetMutable<std::vector<lite::Tensor>>();
  tmp_vars_.push_back("feed");
  tmp_vars_.push_back("fetch");

207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227
  auto VarPrecision2KernlPrecision =
      [](const lite::VarDescAPI::Type& type) -> PrecisionType {
    switch (type) {
      case lite::VarDescAPI::Type::FP32:
        return PRECISION(kFloat);
      case lite::VarDescAPI::Type::FP16:
        return PRECISION(kFP16);
      case lite::VarDescAPI::Type::INT8:
        return PRECISION(kInt8);
      case lite::VarDescAPI::Type::INT16:
        return PRECISION(kInt16);
      case lite::VarDescAPI::Type::INT32:
        return PRECISION(kInt32);
      case lite::VarDescAPI::Type::INT64:
        return PRECISION(kInt64);
      default:
        // LOG(FATAL) << "not supported type: " << static_cast<int>(type);
        return PRECISION(kUnk);
    }
  };

Y
Yan Chunwei 已提交
228 229 230 231 232 233 234
  auto program = prog;
  CHECK(program.BlocksSize());
  for (size_t b = 0; b < program.BlocksSize(); ++b) {
    auto& main_block = *program.GetBlock<cpp::BlockDesc>(b);
    for (size_t i = 0; i < main_block.VarsSize(); ++i) {
      auto& var_desc = *main_block.GetVar<cpp::VarDesc>(i);
      if (!var_desc.Persistable()) {
235 236 237 238 239 240
        if (var_desc.GetType() == lite::VarDescAPI::Type::LOD_TENSOR &&
            VarPrecision2KernlPrecision(var_desc.GetDataType()) !=
                PRECISION(kUnk)) {
          var_data_type_[var_desc.Name()] =
              VarPrecision2KernlPrecision(var_desc.GetDataType());
        }
Y
Yan Chunwei 已提交
241
        tmp_vars_.push_back(var_desc.Name());
242 243 244
        VLOG(4) << "var name: " << var_desc.Name() << " type is "
                << static_cast<int>(var_desc.GetType()) << " data type is "
                << static_cast<int>(var_desc.GetDataType());
Y
Yan Chunwei 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258
        exec_scope_->Var(var_desc.Name());
        if (b > 0) {
          VLOG(4) << "var: " << var_desc.Name();
        }
      } else {
        if (var_desc.Name() == "feed" || var_desc.Name() == "fetch") continue;
        weights_.push_back(var_desc.Name());
        if (var_desc.Persistable()) scope_->Var(var_desc.Name());
      }
    }
  }
}

void Instruction::Run() {
259 260 261 262 263 264 265
#ifdef LITE_WITH_PROFILE
  CHECK(profiler_) << "Profiler pointer of kernel can not be nullptr. "
                      "When LITE_WITH_PROFILE is defined, please set a "
                      "Profiler for Instruction.";
  profiler_->StartTiming(
      profile::Type::kCreate, profile_id_, kernel_->mutable_context());
#endif
Y
Yan Chunwei 已提交
266 267
  CHECK(op_) << "op null";
  CHECK(kernel_) << "kernel null";
268

Y
Yan Chunwei 已提交
269 270 271 272 273
  if (first_epoch_) {
    first_epoch_ = false;
    CHECK(op_->CheckShape());
  }

274 275 276
  if (op_->run_once() && has_run_) {
    return;
  }
277

Y
Yan Chunwei 已提交
278 279 280 281 282 283 284 285 286 287 288 289
  op_->InferShape();
  kernel_->Launch();
  has_run_ = true;
}

STL::ostream& operator<<(STL::ostream& os, const Instruction& other) {
  os << other.kernel_->summary() << "\t(" << other.kernel_->doc() << ")";
  return os;
}

}  // namespace lite
}  // namespace paddle