context.h 16.2 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include "lite/utils/any.h"
#ifdef LITE_WITH_CUDA
19 20
#include "lite/backends/cuda/blas.h"
#include "lite/backends/cuda/cuda_utils.h"
Y
Yan Chunwei 已提交
21 22 23
#endif
#ifdef LITE_WITH_OPENCL
#include <unordered_map>
24 25
#include "lite/backends/opencl/cl_context.h"
#include "lite/backends/opencl/cl_runtime.h"
Y
Yan Chunwei 已提交
26
#endif
27 28 29 30 31
#ifdef LITE_WITH_MLU
#include <cnml.h>
#include <cnrt.h>
#include "lite/backends/mlu/mlu_utils.h"
#endif
32 33 34
#ifdef LITE_WITH_XPU
#include "lite/backends/xpu/xpu_header_sitter.h"
#endif
Y
Yan Chunwei 已提交
35 36 37 38 39 40 41

#include <map>
#include <memory>
#include <set>
#include <string>
#include <utility>
#include <vector>
42
#include "lite/core/device_info.h"
Y
Yan Chunwei 已提交
43 44 45
#include "lite/core/target_wrapper.h"
#include "lite/core/tensor.h"
#include "lite/utils/all.h"
46
#include "lite/utils/env.h"
Y
Yan Chunwei 已提交
47 48 49 50 51 52 53 54 55 56 57 58

namespace paddle {
namespace lite {

template <TargetType Type>
class Context;

using HostContext = Context<TargetType::kHost>;
using X86Context = Context<TargetType::kX86>;
using CUDAContext = Context<TargetType::kCUDA>;
using ARMContext = Context<TargetType::kARM>;
using NPUContext = Context<TargetType::kNPU>;
59
using XPUContext = Context<TargetType::kXPU>;
Y
Yan Chunwei 已提交
60 61
using OpenCLContext = Context<TargetType::kOpenCL>;
using FPGAContext = Context<TargetType::kFPGA>;
62
using BMContext = Context<TargetType::kBM>;
63
using MLUContext = Context<TargetType::kMLU>;
Y
Yan Chunwei 已提交
64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90

template <>
class Context<TargetType::kHost> {
 public:
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopySharedTo(HostContext* ctx) {}

  std::string name() const { return "HostContext"; }
};

#ifdef LITE_WITH_NPU
template <>
class Context<TargetType::kNPU> {
 public:
  Context() {}
  explicit Context(const NPUContext& ctx);
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}
  void CopySharedTo(NPUContext* ctx) {}

  NPUContext& operator=(const NPUContext& ctx) {}
  std::string name() const { return "NPUContext"; }
};
#endif

91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107
#ifdef LITE_WITH_BM
template <>
class Context<TargetType::kBM> {
 public:
  Context() {}
  explicit Context(const BMContext& ctx);
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() { Init(0); }

  void Init(int dev_id) { TargetWrapperBM::SetDevice(dev_id); }
  void CopySharedTo(BMContext* ctx) {}
  void* GetHandle() { return TargetWrapperBM::GetHandle(); }

  std::string name() const { return "BMContext"; }
};
#endif

108 109 110 111 112
#ifdef LITE_WITH_XPU
template <>
class Context<TargetType::kXPU> {
 public:
  Context() {}
113
  explicit Context(const XPUContext& ctx);
114

115 116
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}
117

118 119
  void CopySharedTo(XPUContext* ctx) {}

120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
  static xdnn::Context* GetRawContext() {
    if (_tls_raw_ctx == nullptr) {
      _tls_raw_ctx = xdnn::create_context();
      CHECK(_tls_raw_ctx);
    }
    return _tls_raw_ctx;
  }

  static void SetWorkspaceL3Size(int l3_size = 0xfffc00) {
    xdnn::set_workspace_l3_size(GetRawContext(), l3_size);
  }

  static void SetDev(int dev_no = 0) {
    const char* dev_env = getenv("LITE_XPU_DEV");
    if (dev_env) {
      xpu_set_device(atoi(dev_env));
      return;
    }

    xpu_set_device(dev_no);
  }

142
  std::string name() const { return "XPUContext"; }
143 144 145

 private:
  static thread_local xdnn::Context* _tls_raw_ctx;
146 147 148
};
#endif

Y
Yan Chunwei 已提交
149 150 151 152 153 154 155 156 157 158 159 160 161 162
#ifdef LITE_WITH_ARM
template <>
class Context<TargetType::kARM> {
 public:
  Context() {}
  explicit Context(const ARMContext& ctx);

  ARMContext& operator=(const ARMContext& ctx) {}

  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() { DeviceInfo::Init(); }

  void CopySharedTo(ARMContext* ctx) {}

163
  void SetRunMode(lite_api::PowerMode mode, int threads) {
Y
Yan Chunwei 已提交
164 165 166 167 168 169 170
    return DeviceInfo::Global().SetRunMode(mode, threads);
  }
  void SetCache(int l1size, int l2size, int l3size) {
    return DeviceInfo::Global().SetCache(l1size, l2size, l3size);
  }
  void SetArch(ARMArch arch) { return DeviceInfo::Global().SetArch(arch); }

171
  lite_api::PowerMode mode() const { return DeviceInfo::Global().mode(); }
Y
Yan Chunwei 已提交
172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209
  int threads() const { return DeviceInfo::Global().threads(); }
  ARMArch arch() const { return DeviceInfo::Global().arch(); }
  int l1_cache_size() const { return DeviceInfo::Global().l1_cache_size(); }
  int l2_cache_size() const { return DeviceInfo::Global().l2_cache_size(); }
  int l3_cache_size() const { return DeviceInfo::Global().l3_cache_size(); }
  int llc_size() const { return DeviceInfo::Global().llc_size(); }
  bool has_dot() const { return DeviceInfo::Global().has_dot(); }
  bool has_fp16() const { return DeviceInfo::Global().has_fp16(); }

  template <typename T>
  T* workspace_data() {
    return DeviceInfo::Global().workspace_data<T>();
  }

  bool ExtendWorkspace(size_t size) {
    return DeviceInfo::Global().ExtendWorkspace(size);
  }

  std::string name() const { return "ARMContext"; }
};
#endif

#ifdef LITE_WITH_FPGA
// TODO(tianxiaogang): add needed implementation to context
template <>
class Context<TargetType::kFPGA> {
 public:
  Context() {}
  void InitOnce() {}

  FPGAContext& operator=(const FPGAContext& ctx) {}

  void CopySharedTo(FPGAContext* ctx) {}

  std::string name() const { return "FPGAContext"; }
};
#endif

210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288
#ifdef LITE_WITH_MLU
template <>
class Context<TargetType::kMLU> {
 public:
  typename Env<TargetType::kMLU>::Devs& devs = Env<TargetType::kMLU>::Global();

  void InitOnce() {}

  MLUContext& operator=(const MLUContext& ctx) {
    this->Init(ctx.device_id_, ctx.exec_queue_id_, ctx.io_queue_id_);
    return *this;
  }

  void Init(int dev_id, int exec_queue_id = 0, int io_queue_id = 0) {
    CHECK_GT(devs.size(), 0UL)
        << "Env is not initialized or current target is not exit!";
    if (dev_id >= static_cast<int>(devs.size())) {
      LOG(WARNING) << "device index exceeds the number of devices, set to "
                      "default device(0)!";
      device_id_ = 0;
    } else {
      device_id_ = dev_id;
    }
    SetMluDevice(device_id_);
    if (io_queue_id >= devs[dev_id].max_queue()) {
      LOG(WARNING) << "data queue index exceeds the maximum queue number, "
                      "set to default qeueu(0)!";
      io_queue_id = 0;
    }
    if (exec_queue_id >= devs[dev_id].max_queue()) {
      LOG(WARNING) << "exec queue index exceeds the maximum queue number, "
                      "set to default qeueu(0)!";
      exec_queue_id = 0;
    }
    io_queue_ = devs[dev_id].io_queues()[io_queue_id];
    exec_queue_ = devs[dev_id].exec_queues()[exec_queue_id];

    exec_queue_id_ = exec_queue_id;
    io_queue_id_ = io_queue_id;
  }

  void CopySharedTo(MLUContext* ctx) { ctx->forward_param_ = forward_param_; }

  const cnrtQueue_t& exec_queue() const { return exec_queue_; }
  void SetExecQueue(cnrtQueue_t queue) { exec_queue_ = queue; }

  const cnrtQueue_t& io_queue() const { return io_queue_; }
  void SetIoQueue(cnrtQueue_t queue) { io_queue_ = queue; }

  cnmlCoreVersion_t MLUCoreVersion() {
    return DeviceInfo::Global().MLUCoreVersion();
  }

  int MLUCoreNumber() { return DeviceInfo::Global().MLUCoreNumber(); }

  u32_t affinity() { return affinity_; }

  cnrtInvokeFuncParam_t forward_param() { return forward_param_; }

  int device_id() { return device_id_; }

  std::string name() const { return "MLUContext"; }

 private:
  int device_id_;
  // overall information
  int exec_queue_id_;
  int io_queue_id_;
  cnrtQueue_t io_queue_;
  cnrtQueue_t exec_queue_;

  std::vector<cnrtNotifier_t> input_notifiers_;
  std::vector<cnrtNotifier_t> output_notifiers_;

  cnrtInvokeFuncParam_t forward_param_;
  u32_t affinity_ = 0x01;
};
#endif  // LITE_WITH_MLU

Y
Yan Chunwei 已提交
289 290 291 292 293
#ifdef LITE_WITH_CUDA
// Only works with CUDA kernels.
template <>
class Context<TargetType::kCUDA> {
 public:
294 295
  typename Env<TargetType::kCUDA>::Devs& devs =
      Env<TargetType::kCUDA>::Global();
Y
Yan Chunwei 已提交
296 297
  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {
298 299 300 301 302
    if (devs.size() > 0) {
      cublas_fp32_ = std::make_shared<lite::cuda::Blas<float>>();
    } else {
      LOG(INFO) << "No cuda device(s) found, CUDAContext init failed.";
    }
Y
Yan Chunwei 已提交
303
  }
304
  void Init(int dev_id, int exec_stream_id = 0, int io_stream_id = 0) {
305
    CHECK_GT(devs.size(), 0UL)
306
        << "Env is not initialized or current target is not exit!";
307
    if (dev_id >= static_cast<int>(devs.size())) {
308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323
      LOG(WARNING) << "device index exceeds the number of devices, set to "
                      "default device(0)!";
      device_id_ = 0;
    } else {
      device_id_ = dev_id;
    }
    if (io_stream_id >= devs[dev_id].max_stream()) {
      LOG(WARNING) << "data stream index exceeds the maximum stream number, "
                      "set to default stream(0)!";
      io_stream_id = 0;
    }
    if (exec_stream_id >= devs[dev_id].max_stream()) {
      LOG(WARNING) << "exec stream index exceeds the maximum stream number, "
                      "set to default stream(0)!";
      exec_stream_id = 0;
    }
Y
Yan Chunwei 已提交
324

325 326 327 328 329 330
    exec_stream_ = devs[dev_id].exec_streams()[exec_stream_id];
    io_stream_ = devs[dev_id].io_streams()[io_stream_id];

    exec_stream_id_ = exec_stream_id;
    io_stream_id_ = io_stream_id;
  }
Y
Yan Chunwei 已提交
331 332 333 334 335 336
  void CopySharedTo(CUDAContext* ctx) {
    CHECK(ctx);
    CHECK(cublas_fp32_) << "cublas_fp32 should be set first";
    ctx->cublas_fp32_ = cublas_fp32_;
  }

337
  const cudaStream_t& exec_stream() const { return exec_stream_; }
Y
Yan Chunwei 已提交
338 339
  void SetExecStream(cudaStream_t stream) { exec_stream_ = stream; }

340
  const cudaStream_t& io_stream() const { return io_stream_; }
Y
Yan Chunwei 已提交
341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361
  void SetIoStream(cudaStream_t stream) { io_stream_ = stream; }

  std::shared_ptr<cuda::Blas<float>> cublas_fp32() { return cublas_fp32_; }
  void SetCuBlasFP32(std::shared_ptr<cuda::Blas<float>> cublas_fp32) {
    cublas_fp32_ = cublas_fp32;
  }

  const std::vector<cudaEvent_t>& input_events() { return input_events_; }
  void SetInputEvents(const std::vector<cudaEvent_t>& input_events) {
    input_events_.clear();
    input_events_.assign(input_events.begin(), input_events.end());
  }

  const std::vector<cudaEvent_t>& output_events() { return output_events_; }
  void SetOutputEvents(const std::vector<cudaEvent_t>& output_events) {
    output_events_.clear();
    output_events_.assign(output_events.begin(), output_events.end());
  }

  std::string name() const { return "CUDAContext"; }

W
Wilber 已提交
362 363 364 365 366 367 368
  CUDAContext& operator=(const CUDAContext& context) {
    this->Init(
        context.device_id_, context.exec_stream_id_, context.io_stream_id_);
    cublas_fp32_ = const_cast<CUDAContext&>(context).cublas_fp32();
    return *this;
  }

Y
Yan Chunwei 已提交
369
 private:
370
  int device_id_;
Y
Yan Chunwei 已提交
371
  // overall information
372 373
  int exec_stream_id_;
  int io_stream_id_;
Y
Yan Chunwei 已提交
374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410
  cudaStream_t exec_stream_;
  cudaStream_t io_stream_;

  // not thread-safe, should allocate for each thread.
  std::shared_ptr<cuda::Blas<float>> cublas_fp32_;

  // kernel information
  std::vector<cudaEvent_t> input_events_;
  std::vector<cudaEvent_t> output_events_;
};
#endif

#ifdef LITE_WITH_X86
template <>
class Context<TargetType::kX86> {
 public:
  Context() {}

  // NOTE: InitOnce should only be used by ContextScheduler
  void InitOnce() {}

  void CopySharedTo(X86Context* ctx) {}

  std::string name() const { return "X86Context"; }

 private:
  // overall information
  //
  // kernel information
};
#endif

#ifdef LITE_WITH_OPENCL
template <>
class Context<TargetType::kOpenCL> {
  std::shared_ptr<CLContext> cl_context_;
  using WaitListType =
411
      std::unordered_map<decltype(static_cast<const void*>(nullptr)),
Y
Yan Chunwei 已提交
412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471
                         std::shared_ptr<cl::Event>>;
  std::shared_ptr<WaitListType> cl_wait_list_;

 public:
  CLContext* cl_context() { return cl_context_.get(); }
  WaitListType* cl_wait_list() { return cl_wait_list_.get(); }

  void InitOnce() {
    // Init cl runtime.
    CHECK(CLRuntime::Global()->IsInitSuccess()) << "OpenCL runtime init failed";

    cl_context_ = std::make_shared<CLContext>();
    cl_wait_list_ = std::make_shared<WaitListType>();
  }

  void CopySharedTo(OpenCLContext* ctx) {
    ctx->cl_context_ = cl_context_;
    ctx->cl_wait_list_ = cl_wait_list_;
  }
};
#endif

// Context for running a kernel.
// Holds the necessary resource and information.
class KernelContext {
 public:
  template <typename ContextT>
  ContextT& As() {
    if (!ctx_.valid()) {
      ctx_.set<ContextT>();
    }
    return *ctx_.get_mutable<ContextT>();
  }

 private:
  Any ctx_;
};

// The ContextScheduler helps to assign different context for each kernel.
class ContextScheduler {
 public:
  static ContextScheduler& Global() {
    static auto* x = new ContextScheduler;
    return *x;
  }

  std::unique_ptr<KernelContext> NewContext(TargetType target) {
    std::unique_ptr<KernelContext> ctx(new KernelContext);
    switch (target) {
      case TARGET(kHost):
        kernel_contexts_[TargetType::kHost].As<HostContext>().CopySharedTo(
            &ctx->As<HostContext>());
        break;
#ifdef LITE_WITH_X86
      case TARGET(kX86):
        kernel_contexts_[TargetType::kX86].As<X86Context>().CopySharedTo(
            &ctx->As<X86Context>());
        break;
#endif
#ifdef LITE_WITH_CUDA
472 473 474 475
      case TARGET(kCUDA): {
        int dev_id = TargetWrapper<TargetType::kCUDA>::GetCurDevice();
        auto& context = ctx->As<CUDAContext>();
        context.Init(dev_id);
Y
Yan Chunwei 已提交
476
        kernel_contexts_[TargetType::kCUDA].As<CUDAContext>().CopySharedTo(
477 478
            &context);
      } break;
Y
Yan Chunwei 已提交
479 480 481 482 483 484 485 486 487 488 489 490 491
#endif
#ifdef LITE_WITH_ARM
      case TARGET(kARM):
        kernel_contexts_[TargetType::kARM].As<ARMContext>().CopySharedTo(
            &ctx->As<ARMContext>());
        break;
#endif
#ifdef LITE_WITH_NPU
      case TARGET(kNPU):
        kernel_contexts_[TargetType::kNPU].As<NPUContext>().CopySharedTo(
            &ctx->As<NPUContext>());
        break;
#endif
492 493 494 495 496 497
#ifdef LITE_WITH_XPU
      case TARGET(kXPU):
        kernel_contexts_[TargetType::kXPU].As<XPUContext>().CopySharedTo(
            &ctx->As<XPUContext>());
        break;
#endif
Y
Yan Chunwei 已提交
498 499 500 501 502 503 504 505 506 507 508
#ifdef LITE_WITH_OPENCL
      case TARGET(kOpenCL):
        kernel_contexts_[TargetType::kOpenCL].As<OpenCLContext>().CopySharedTo(
            &ctx->As<OpenCLContext>());
        break;
#endif
#ifdef LITE_WITH_FPGA
      case TARGET(kFPGA):
        kernel_contexts_[TargetType::kFPGA].As<FPGAContext>().CopySharedTo(
            &ctx->As<FPGAContext>());
        break;
509 510 511 512 513 514
#endif
#ifdef LITE_WITH_BM
      case TARGET(kBM):
        kernel_contexts_[TargetType::kBM].As<BMContext>().CopySharedTo(
            &ctx->As<BMContext>());
        break;
515 516 517 518 519 520 521 522 523 524
#endif
#ifdef LITE_WITH_MLU
      case TARGET(kMLU): {
        int dev_id = TargetWrapper<TargetType::kMLU>::GetCurDevice();
        auto& context = ctx->As<MLUContext>();
        context.Init(dev_id);
        kernel_contexts_[TargetType::kMLU].As<MLUContext>().CopySharedTo(
            &context);
        LOG(INFO) << "New Context for MLU";
      } break;
Y
Yan Chunwei 已提交
525 526
#endif
      default:
527
#if (!defined LITE_ON_MODEL_OPTIMIZE_TOOL) && (!defined LITE_WITH_PYTHON)
Y
Yan Chunwei 已提交
528
        LOG(FATAL) << "unsupported target " << TargetToStr(target);
529 530
#endif
        break;
Y
Yan Chunwei 已提交
531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559
    }
    return ctx;
  }

 private:
  template <TargetType Type, typename ContextT>
  void InitContext() {
    kernel_contexts_[Type].As<ContextT>().InitOnce();
  }

  ContextScheduler() {
    InitContext<TargetType::kHost, HostContext>();
#ifdef LITE_WITH_X86
    InitContext<TargetType::kX86, X86Context>();
#endif
#ifdef LITE_WITH_CUDA
    InitContext<TargetType::kCUDA, CUDAContext>();
#endif
#ifdef LITE_WITH_ARM
    InitContext<TargetType::kARM, ARMContext>();
#endif
#ifdef LITE_WITH_OPENCL
    InitContext<TargetType::kOpenCL, OpenCLContext>();
#endif
#ifdef LITE_WITH_FPGA
    InitContext<TargetType::kFPGA, FPGAContext>();
#endif
#ifdef LITE_WITH_NPU
    InitContext<TargetType::kNPU, NPUContext>();
560 561 562
#endif
#ifdef LITE_WITH_XPU
    InitContext<TargetType::kXPU, XPUContext>();
563 564 565
#endif
#ifdef LITE_WITH_BM
    InitContext<TargetType::kBM, BMContext>();
566 567 568
#endif
#ifdef LITE_WITH_MLU
    InitContext<TargetType::kMLU, MLUContext>();
Y
Yan Chunwei 已提交
569 570 571 572 573 574 575 576 577
#endif
  }

 private:
  std::map<TargetType, KernelContext> kernel_contexts_;
};

}  // namespace lite
}  // namespace paddle