conv_bn_relu_kernel.cpp 2.9 KB
Newer Older
Z
zhangyang 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVBNRELU_OP

#include "operators/kernel/conv_bn_relu_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
N
nhzlx 已提交
23
bool ConvBNReluKernel<FPGA, float>::Init(FusionConvBNReluParam<FPGA> *param) {
Z
zhangyang 已提交
24
  bool relu_enabled = true;
Z
zhangyang 已提交
25 26 27
  auto input = const_cast<Tensor *>(param->Input());
  auto filter = const_cast<Tensor *>(param->Filter());
  auto out = param->Output();
Z
zhangyang 已提交
28 29 30 31 32
  auto bn_mean_ptr = param->InputMean()->data<float>();
  auto bn_var_ptr = param->InputVariance()->data<float>();
  auto bn_scale_ptr = param->InputScale()->data<float>();
  auto bn_bias_ptr = param->InputBias()->data<float>();
  const float epsilon = param->Epsilon();
Z
zhangyang 已提交
33 34 35
  PADDLE_MOBILE_ENFORCE(out->dims()[1] == param->InputBias()->dims()[0],
                        "Output channel should be equal to bias number");
  const int channel = out->dims()[1];
Z
zhangyang 已提交
36 37 38
  auto bs_ptr = (float *)fpga::fpga_malloc(2 * channel * sizeof(float));
  auto new_scale = new Tensor();
  auto new_bias = new Tensor();
Z
zhangyang 已提交
39 40 41 42 43 44
  auto new_scale_ptr = new_scale->mutable_data<float>({channel});
  auto new_bias_ptr = new_bias->mutable_data<float>({channel});

  for (int i = 0; i < channel; i++) {
    new_scale_ptr[i] = bn_scale_ptr[i] /
                       static_cast<float>(pow((bn_var_ptr[i] + epsilon), 0.5));
Z
zhangyang 已提交
45
    new_bias_ptr[i] = bn_bias_ptr[i] + (0 - bn_mean_ptr[i]) * new_scale_ptr[i];
Z
zhangyang 已提交
46 47
    bs_ptr[i + channel] = new_scale_ptr[i];
    bs_ptr[i] = new_bias_ptr[i];
Z
zhangyang 已提交
48 49 50
  }
  param->SetNewScale(new_scale);
  param->SetNewBias(new_bias);
Z
zhangyang 已提交
51 52 53

  float max_value = fpga::filter_find_max(filter);
  fpga::format_filter(filter, max_value, param->Groups());
Z
zhangyang 已提交
54

Z
zhangyang 已提交
55
  int element_num_per_div =
56
      fpga::get_filter_num_per_div(filter, param->Groups());
Z
zhangyang 已提交
57 58
  fpga::format_bias_scale_array(&bs_ptr, element_num_per_div, channel);

Z
zhangyang 已提交
59
  fpga::format_fp16_ofm(out);
Z
zhangyang 已提交
60

61 62 63 64 65
  fpga::WrapperConvArgs conv_arg;
  fpga::fill_conv_arg(&conv_arg, input, out, filter, relu_enabled,
                      param->Groups(), param->Strides()[0], param->Strides()[1],
                      param->Paddings()[0], param->Paddings()[1], bs_ptr);
  param->SetFpgaArgs(conv_arg);
Z
zhangyang 已提交
66 67 68 69 70
  return true;
}

template <>
void ConvBNReluKernel<FPGA, float>::Compute(
N
nhzlx 已提交
71
    const FusionConvBNReluParam<FPGA> &param) const {
Z
zhangyang 已提交
72 73 74 75 76 77 78
  fpga::ComputeFpgaConv(param.FpgaArgs());
}

}  // namespace operators
}  // namespace paddle_mobile

#endif