conv_kernel.cpp 3.5 KB
Newer Older
Z
zhaojiaying01 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
朔-望's avatar
朔-望 已提交
14

L
liuruilong 已提交
15 16
#ifdef CONV_OP

朔-望's avatar
朔-望 已提交
17
#include "operators/kernel/conv_kernel.h"
18
#include "operators/kernel/central-arm-func/conv_arm_func.h"
朔-望's avatar
朔-望 已提交
19 20

namespace paddle_mobile {
朔-望's avatar
朔-望 已提交
21 22
namespace operators {

L
liuruilong 已提交
23
template <>
N
nhzlx 已提交
24
bool ConvKernel<CPU, float>::Init(ConvParam<CPU> *param) {
H
hjchen2 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53
  if (param->Input()->type() == typeid(int8_t)) {
    param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_INT8;
  } else {
    if (param->Groups() == param->Input()->dims()[1] &&
        param->Input()->dims()[1] == param->Output()->dims()[1] &&
        param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
        param->Filter()->dims()[2] == 3 && param->Strides()[0] == 1) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3S1P1_FLOAT;
    } else if (param->Groups() == param->Input()->dims()[1] &&
               param->Input()->dims()[1] == param->Output()->dims()[1] &&
               param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
               param->Filter()->dims()[2] == 3) {
      param->ExecMode() = ConvParam<CPU>::EXEC_DEPTHWISE3x3_FLOAT;
    } else if (param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
               param->Strides()[0] == param->Strides()[1] &&
               param->Dilations()[0] == param->Dilations()[1] &&
               param->Filter()->dims()[2] == 3 && param->Strides()[0] == 1 &&
               param->Dilations()[0] == 1 && param->Output()->dims()[1] >= 16 &&
               param->Input()->dims()[2] >= 16) {
      param->ExecMode() = ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT;
      // transform weight
      framework::Tensor *transformed_weight = new framework::Tensor;
      operators::math::winograd_transform_weight<8, 3>(*param->Filter(),
                                                       transformed_weight);
      param->Filter() = transformed_weight;
    } else {
      param->ExecMode() = ConvParam<CPU>::EXEC_GEMM_FLOAT;
    }
  }
L
liuruilong 已提交
54 55 56
  return true;
}

朔-望's avatar
朔-望 已提交
57
template <>
N
nhzlx 已提交
58
void ConvKernel<CPU, float>::Compute(const ConvParam<CPU> &param) const {
H
hjchen2 已提交
59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80
  switch (param.ExecMode()) {
    case ConvParam<CPU>::EXEC_GEMM_INT8:
      GemmConv<int8_t, int32_t>(param);
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3S1P1_FLOAT:
      math::DepthwiseConv3x3s1p1(param.Input(), param.Filter(), param.Output(),
                                 nullptr, false);
      break;
    case ConvParam<CPU>::EXEC_DEPTHWISE3x3_FLOAT:
      math::DepthwiseConv3x3(param.Input(), param.Strides(), param.Paddings(),
                             param.Filter(), nullptr, param.Output(), false);
      break;
    case ConvParam<CPU>::EXEC_WINOGRAD3X3_FLOAT:
      WinogradConv3x3<8, 3>(param);
      break;
    case ConvParam<CPU>::EXEC_GEMM_FLOAT:
      GemmConv<float, float>(param);
      break;
    default:
      PADDLE_MOBILE_THROW_EXCEPTION("Invalid convolution execute mode %d",
                                    param.ExecMode());
  }
朔-望's avatar
朔-望 已提交
81 82
}

83
template class ConvKernel<CPU, float>;
朔-望's avatar
朔-望 已提交
84

朔-望's avatar
朔-望 已提交
85 86
}  // namespace operators
}  // namespace paddle_mobile
L
liuruilong 已提交
87 88

#endif