relu_kernel.cpp 4.1 KB
Newer Older
H
Hao Han 已提交
1
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
S
sharper 已提交
2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef RELU_OP

#pragma once

#include "operators/kernel/relu_kernel.h"
#ifdef PADDLE_MOBILE_MALI_GPU
#include "acl_operator.h"
#include "framework/operator.h"
#include "operators/op_param.h"

namespace paddle_mobile {
namespace operators {

template <typename DeviceType, typename T>
class AclReluOp : public acl::ACLOperator {
 public:
  AclReluOp() {
    this->force_bypass_acl_path_ =
        bypass_acl_class_layer & FLAGS_ENABLE_ACL_RELU;
  }
  ~AclReluOp() = default;
  AclReluOp(const AclReluOp&) = delete;
  AclReluOp& operator=(const AclReluOp&) = delete;
  AclReluOp(AclReluOp&&) = delete;
  AclReluOp& operator=(AclReluOp&&) = delete;

  acl::AclParameters& getargs() { return args; }
  void InitAclLayer(const ReluParam& param) {
    setTargetHint(acl::TargetHint::OPENCL);
H
Hao Han 已提交
44 45 46 47
    arm_compute::TensorShape input_shape(args.in_cols, args.in_rows,
                                         args.in_depth, args.batch);
    arm_compute::TensorShape output_shape(args.in_cols, args.in_rows,
                                          args.in_depth, args.out_num);
S
sharper 已提交
48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
    // arm_compute::TensorShape weights_shape(
    // args.filter_cols, args.filter_rows, args.in_depth, args.out_depth);
    // arm_compute::TensorShape biases_shape(args.out_depth);
    arm_compute::ActivationLayerInfo::ActivationFunction type;
    type = arm_compute::ActivationLayerInfo::ActivationFunction::RELU;

    arm_compute::ActivationLayerInfo act_info(type);

    if (is_operator_init_done(input_shape)) return;
    set_operator_init_done();
    this->force_bypass_acl_path_ = false;

    //[width, height, IFM]
    new_tensor(input(), input_shape, args.input_data);
    //[width, height, OFM]
    new_tensor(output(), output_shape, args.output_data);

    acl_configure(activation, this, act_info);
  }

  void RunAcl(void* input, void* output) {
    acl::ACLOperator::acl_run(input, output);
  }
  bool Bypass_acl(const ReluParam& param) {
    bool bypass_acl = false;
    AclParametersByContext(param);
H
Hao Han 已提交
74
    InitAclLayer(param);
S
sharper 已提交
75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109
    // for performance, more groups impact GPU performance
    if (this->force_bypass_acl_path_) {
      bypass_acl = true;
    }
    return bypass_acl;
  }

 private:
  void AclParametersByContext(const ReluParam& param) {
    const auto* input_x = param.InputX();
    auto* out = param.Out();

    const T* input_data = input_x->data<T>();
    T* output_data = out->mutable_data<T>();

    args.input_data = (void*)input_data;
    args.output_data = (void*)output_data;

    args.batch = input_x->dims()[0];
    args.in_depth = input_x->dims()[1];
    args.in_rows = input_x->dims()[2];
    args.in_cols = input_x->dims()[3];
    args.out_num = out->dims()[0];
  }
  acl::AclParameters args;
};

template <>
bool ReluKernel<GPU_MALI, float>::Init(const ReluParam& param) const {
  AclReluOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclReluOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    acl_op = new AclReluOp<GPU_MALI, float>();
    this->SetAclOp((void*)acl_op, (void*)this);
  }
H
Hao Han 已提交
110 111 112 113
  if (acl_op->Bypass_acl(param)) {
    std::cout << "init acl failed" << std::endl;
    return false;
  }
S
sharper 已提交
114 115 116 117 118 119 120 121 122 123 124 125
  return true;
}

template <>
void ReluKernel<GPU_MALI, float>::Compute(const ReluParam& param) const {
  std::cout << "init acl" << std::endl;
  AclReluOp<GPU_MALI, float>* acl_op =
      reinterpret_cast<AclReluOp<GPU_MALI, float>*>(this->GetAclOp());
  if (acl_op == nullptr) {
    return;
  }
  acl::AclParameters& args = acl_op->getargs();
H
Hao Han 已提交
126
  acl_op->RunAcl(args.input_data, args.output_data);
S
sharper 已提交
127 128 129 130 131 132 133 134
}

template class ReluKernel<GPU_MALI, float>;
}  // namespace operators
}  // namespace paddle_mobile

#endif
#endif