conv_add_relu_kernel.cpp 5.0 KB
Newer Older
Y
yangfei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */

#ifdef FUSION_CONVADDRELU_OP

#include "operators/kernel/conv_add_relu_kernel.h"

namespace paddle_mobile {
namespace operators {

template <>
bool ConvAddReluKernel<GPU_CL, float>::Init(
    FusionConvAddReluParam<GPU_CL> *param) {
  PADDLE_MOBILE_ENFORCE(
      param->Filter()->dims()[2] == param->Filter()->dims()[3] &&
          param->Paddings()[0] == param->Paddings()[1],
      "need equal");
  param->Bias()->InitCLImage(cl_helper_.CLContext(),
                             this->cl_helper_.CLCommandQueue());

  int offset = static_cast<int>(param->Filter()->dims()[2]) / 2 -
               static_cast<int>(param->Paddings()[1]);
  param->SetOffset(offset);

  if (param->Filter()->dims()[2] == 1 && param->Filter()->dims()[3] == 1) {
    param->Filter()->InitNImage(cl_helper_.CLContext(),
                                cl_helper_.CLCommandQueue());

    this->cl_helper_.AddKernel("conv_1x1", "conv_add_relu_kernel.cl");
  } else if (param->Filter()->dims()[1] == 1 &&
             param->Input()->dims()[1] == param->Output()->dims()[1] &&
             param->Filter()->dims()[2] == 3) {
    param->Filter()->InitDWImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());
    this->cl_helper_.AddKernel("depth_conv_3x3", "conv_add_relu_kernel.cl");

  } else if (param->Filter()->dims()[2] == 3 &&
             param->Filter()->dims()[3] == 3) {
    param->Filter()->InitCLImage(cl_helper_.CLContext(),
                                 cl_helper_.CLCommandQueue());

    this->cl_helper_.AddKernel("conv_3x3", "conv_add_relu_kernel.cl");

  } else {
    PADDLE_MOBILE_THROW_EXCEPTION(" not support ");
  }

  return true;
}

template <>
void ConvAddReluKernel<GPU_CL, float>::Compute(
    const FusionConvAddReluParam<GPU_CL> &param) {
  auto kernel = this->cl_helper_.KernelAt(0);
  auto default_work_size = this->cl_helper_.DefaultWorkSize(*param.Output());
  int c_block = default_work_size[0];
  int w = default_work_size[1];
  int nh = default_work_size[2];
  auto input = param.Input()->GetCLImage();
  auto filter = param.Filter()->GetCLImage();
  DLOG << "---yangfei30---";
  DLOG << *param.Filter();
  DLOG << param.Paddings();
  auto biase = param.Bias()->GetCLImage();
  auto output = param.Output()->GetCLImage();
  int stride = param.Strides()[0];
  int offset = param.Offset();
  int input_c = reinterpret_cast<framework::CLImageConverterFolder *>(
                    param.Input()->Converter())
                    ->GetCBlock();
  int dilation = param.Dilations()[0];

  int input_width = param.Input()->dims()[3];
  int input_height = param.Input()->dims()[2];
  int output_width = param.Output()->dims()[3];
  int output_height = param.Output()->dims()[2];

  cl_int status;

  status = clSetKernelArg(kernel, 0, sizeof(int), &c_block);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 1, sizeof(int), &w);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 2, sizeof(int), &nh);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 3, sizeof(cl_mem), &input);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 4, sizeof(cl_mem), &filter);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 5, sizeof(cl_mem), &biase);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 6, sizeof(cl_mem), &output);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 7, sizeof(int), &stride);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 8, sizeof(int), &offset);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 9, sizeof(int), &input_c);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 10, sizeof(int), &dilation);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 11, sizeof(int), &input_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 12, sizeof(int), &input_height);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 13, sizeof(int), &output_width);
  CL_CHECK_ERRORS(status);

  status = clSetKernelArg(kernel, 14, sizeof(int), &output_height);
  CL_CHECK_ERRORS(status);

  //  cl_event out_event = param.Output()->GetClEvent();
  //  cl_event wait_event = param.Input()->GetClEvent();

  status = clEnqueueNDRangeKernel(
      this->cl_helper_.CLCommandQueue(), kernel, default_work_size.size(), NULL,
      default_work_size.data(), NULL, 0, NULL, NULL);
  CL_CHECK_ERRORS(status);
}

template class ConvAddReluKernel<GPU_CL, float>;

}  // namespace operators
}  // namespace paddle_mobile

#endif