batch_norm_op_test.cc 5.6 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/batch_norm_op.h"
#include <gtest/gtest.h>
17 18
#include "lite/backends/npu/bridge/registry.h"
#include "lite/backends/npu/bridge/test_helper.h"
Y
Yan Chunwei 已提交
19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166
#include "lite/core/op_registry.h"

namespace paddle {
namespace lite {
namespace npu {
namespace bridge {

template <typename dtype>
void batch_norm_ref(const std::shared_ptr<operators::BatchNormOp> op) {
  Scope* scope = op->scope();
  const OpInfo* op_info = op->op_info();
  auto x = scope->FindVar(op_info->Input("X").front())->GetMutable<Tensor>();
  auto y = scope->FindVar(op_info->Output("Y").front())->GetMutable<Tensor>();
  auto bias =
      scope->FindVar(op_info->Input("Bias").front())->GetMutable<Tensor>();
  auto scale =
      scope->FindVar(op_info->Input("Scale").front())->GetMutable<Tensor>();
  auto mean =
      scope->FindVar(op_info->Input("Mean").front())->GetMutable<Tensor>();
  auto variance =
      scope->FindVar(op_info->Input("Variance").front())->GetMutable<Tensor>();

  auto x_data = x->data<dtype>();
  auto y_data = y->mutable_data<dtype>();
  auto scale_data = scale->mutable_data<dtype>();
  auto bias_data = bias->mutable_data<dtype>();
  auto mean_data = mean->mutable_data<dtype>();
  auto variance_data = variance->mutable_data<dtype>();
  DDim x_dims = x->dims();

  float epsilon = op_info->GetAttr<float>("epsilon");
  float momentum = op_info->GetAttr<float>("momentum");
  auto data_layout = op_info->GetAttr<std::string>("data_layout");

  bool global_stats = op_info->GetAttr<bool>("use_global_stats");
  if (global_stats) {
    int64_t outer_size = 0;
    int64_t channel_size = 0;
    int64_t inner_size = 0;
    if (data_layout == "NCHW") {
      outer_size = x_dims[0];
      channel_size = x_dims[1];
      inner_size = x_dims.Slice(2, x_dims.size()).production();
    } else {
      LOG(FATAL) << "Unknown storage order: " << data_layout;
    }
    auto x_ptr = x_data;
    auto y_ptr = y_data;
    for (int o = 0; o < outer_size; o++) {
      for (int c = 0; c < channel_size; c++) {
        for (int i = 0; i < inner_size; i++) {
          dtype norm_x =
              (*x_ptr - mean_data[c]) / std::sqrt(variance_data[c] + epsilon);
          *y_ptr = norm_x * scale_data[c] + bias_data[c];
          x_ptr++;
          y_ptr++;
        }
      }
    }
  }
}

void test_batch_norm(
    int bs, int ic, int ih, int iw, float epsilon, float momentum) {
  // prepare input&output variables
  Scope scope;
  std::string x_var_name = "x";
  std::string out_var_name = "out";
  std::string out_ref_var_name = "out_ref";
  std::string scale_var_name = "scale";
  std::string bias_var_name = "bias";
  std::string mean_var_name = "mean";
  std::string variance_var_name = "variance";
  auto* x = scope.Var(x_var_name)->GetMutable<Tensor>();
  auto* scale = scope.Var(scale_var_name)->GetMutable<Tensor>();
  auto* bias = scope.Var(bias_var_name)->GetMutable<Tensor>();
  auto* mean = scope.Var(mean_var_name)->GetMutable<Tensor>();
  auto* variance = scope.Var(variance_var_name)->GetMutable<Tensor>();
  auto* out = scope.Var(out_var_name)->GetMutable<Tensor>();
  auto* out_ref = scope.Var(out_ref_var_name)->GetMutable<Tensor>();
  x->Resize({bs, ic, ih, iw});
  scale->Resize({ic});
  bias->Resize({ic});
  mean->Resize({ic});
  variance->Resize({ic});

  // initialize input&output data
  FillTensor<float, int>(x);
  FillTensor<float, int>(scale);
  FillTensor<float, int>(bias);
  FillTensor<float, int>(mean);
  // variance > 0
  FillTensor<float, int>(variance, 1.f, 5.f);

  // initialize op desc
  cpp::OpDesc opdesc;
  opdesc.SetType("batch_norm");
  opdesc.SetInput("X", {x_var_name});
  opdesc.SetInput("Scale", {scale_var_name});
  opdesc.SetInput("Bias", {bias_var_name});
  opdesc.SetInput("Mean", {mean_var_name});
  opdesc.SetInput("Variance", {variance_var_name});
  opdesc.SetOutput("Y", {out_var_name});
  opdesc.SetAttr("is_test", 1);
  opdesc.SetAttr("use_global_stats", true);
  opdesc.SetAttr("epsilon", epsilon);
  opdesc.SetAttr("momentum", momentum);
  opdesc.SetAttr("data_layout", std::string("NCHW"));

  // create and convert op to NPU model, then run it on NPU
  auto op = CreateOp<operators::BatchNormOp>(opdesc, &scope);
  LauchOp(op, {x_var_name}, {out_var_name});
  out_ref->CopyDataFrom(*out);

  // execute reference implementation and save to output tensor
  batch_norm_ref<float>(op);

  // compare results
  auto* out_data = out->mutable_data<float>();
  auto* out_ref_data = out_ref->mutable_data<float>();
  for (int i = 0; i < out->dims().production(); i++) {
    EXPECT_NEAR(out_data[i], out_ref_data[i], 1e-2);
  }
}

TEST(NPUBridges, batch_norm) {
  for (auto bs : {1, 4, 7}) {
    for (auto ic : {1, 4, 7}) {
      for (auto ih : {1, 4, 7}) {
        for (auto iw : {1, 4, 7}) {
          for (auto epsilon : {1e-4f, 1e-5f}) {
            for (auto momentum : {0.9f, 0.99f}) {
              test_batch_norm(bs, ic, ih, iw, epsilon, momentum);
            }
          }
        }
      }
    }
  }
}

}  // namespace bridge
}  // namespace npu
}  // namespace lite
}  // namespace paddle

USE_LITE_OP(batch_norm);
USE_NPU_BRIDGE(batch_norm);