batch_norm_op.cc 3.8 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include "lite/operators/batch_norm_op.h"
#include "ai_ddk_lib/include/graph/buffer.h"
#include "ai_ddk_lib/include/graph/graph.h"
#include "ai_ddk_lib/include/graph/model.h"
#include "ai_ddk_lib/include/graph/op/all_ops.h"
#include "ai_ddk_lib/include/graph/operator.h"
#include "ai_ddk_lib/include/graph/operator_reg.h"
22 23
#include "lite/backends/npu/bridge/registry.h"
#include "lite/backends/npu/bridge/utils.h"
Y
Yan Chunwei 已提交
24 25 26 27 28 29 30 31 32

namespace paddle {
namespace lite {
namespace npu {
namespace bridge {

node_map_type BatchNormConverter(
    const std::shared_ptr<lite::OpLite> batch_norm_op,
    const node_map_type& inputs_map) {
33 34 35 36 37
  auto scope = batch_norm_op->scope();
  auto op_info = batch_norm_op->op_info();
  auto op_type = op_info->Type();
  auto unique_op_type = UniqueName(op_type);
  LOG(INFO) << "Converting " + op_type + "...";
Y
Yan Chunwei 已提交
38

39 40
  std::shared_ptr<ge::op::BatchNorm> batch_norm_node =
      std::make_shared<ge::op::BatchNorm>(unique_op_type);
Y
Yan Chunwei 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
  auto x_var_name = op_info->Input("X").front();

  auto scale_var_name = op_info->Input("Scale").front();
  lite::Tensor* scale = scope->FindVar(scale_var_name)->GetMutable<Tensor>();
  auto npu_scale = std::make_shared<ge::op::Const>(scale_var_name);
  npu_scale->set_attr_value(CvtFromLiteTensor(scale));
  OpList::Global().add(npu_scale);

  auto bias_var_name = op_info->Input("Bias").front();
  lite::Tensor* bias = scope->FindVar(bias_var_name)->GetMutable<Tensor>();
  auto npu_bias = std::make_shared<ge::op::Const>(bias_var_name);
  npu_bias->set_attr_value(CvtFromLiteTensor(bias));
  OpList::Global().add(npu_bias);

  auto mean_var_name = op_info->Input("Mean").front();
  lite::Tensor* mean = scope->FindVar(mean_var_name)->GetMutable<Tensor>();
  auto npu_mean = std::make_shared<ge::op::Const>(mean_var_name);
  npu_mean->set_attr_value(CvtFromLiteTensor(mean));
  OpList::Global().add(npu_mean);

  auto variance_var_name = op_info->Input("Variance").front();
  lite::Tensor* variance =
      scope->FindVar(variance_var_name)->GetMutable<Tensor>();
  auto npu_variance = std::make_shared<ge::op::Const>(variance_var_name);
  npu_variance->set_attr_value(CvtFromLiteTensor(variance));
  OpList::Global().add(npu_variance);

  float npu_momentum = op_info->GetAttr<float>("momentum");
  float npu_epsilon = op_info->GetAttr<float>("epsilon");
  int npu_mode = 1;  // bnScale, bnBias tensor dims are 1xCx1x1
  bool npu_use_global_stats = op_info->GetAttr<bool>("use_global_stats");

73 74 75 76 77 78 79 80 81
  batch_norm_node->set_input_x(*inputs_map.at(x_var_name));
  batch_norm_node->set_input_scale(*npu_scale);
  batch_norm_node->set_input_b(*npu_bias);
  batch_norm_node->set_input_mean(*npu_mean);
  batch_norm_node->set_input_variance(*npu_variance);
  batch_norm_node->set_attr_momentum(npu_momentum);
  batch_norm_node->set_attr_epsilon(npu_epsilon);
  batch_norm_node->set_attr_mode(npu_mode);
  batch_norm_node->set_attr_use_global_stats(npu_use_global_stats);
Y
Yan Chunwei 已提交
82 83

  OpList::Global().add(inputs_map.at(x_var_name));
84
  OpList::Global().add(batch_norm_node);
Y
Yan Chunwei 已提交
85 86

  node_map_type outputs_map;
87
  outputs_map[op_info->Output("Y").front()] = batch_norm_node;
Y
Yan Chunwei 已提交
88 89 90 91 92 93 94 95 96
  return outputs_map;
}

}  // namespace bridge
}  // namespace npu
}  // namespace lite
}  // namespace paddle

REGISTER_NPU_BRIDGE(batch_norm, paddle::lite::npu::bridge::BatchNormConverter);