transpose_compute.cc 4.2 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <vector>

#include "lite/core/op_registry.h"
#include "lite/core/tensor.h"
#include "lite/core/type_system.h"
#include "lite/kernels/fpga/transpose_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

void transposeCompute(operators::TransposeParam param) {
  // copy from;
  const auto* input_x = param.x;
  const auto input_x_dims = input_x->dims();
  input_x->ZynqTensor()->invalidate();
  input_x->ZynqTensor()->unalignImage();

  Tensor float_input;
  float_input.Resize(input_x_dims);
  float_input.mutable_data<float>();
  float_input.ZynqTensor()->copyFrom(input_x->ZynqTensor());

  const auto* input_x_data = float_input.data<float>();

  auto* out = param.output;
  const auto axis = param.axis;

  auto* out_data = out->mutable_data<float>();

  size_t ndim = axis.size();
  std::vector<int> xdim(ndim);
  std::vector<int> xstride(ndim);
  std::vector<int> xout(ndim);
  for (int i = 0; i < ndim; i++) {
    int j = ndim - 1 - i;
    xdim[j] = input_x_dims[axis[i]];
    xstride[j] = 1;
    for (int k = axis[i] + 1; k < ndim; k++) {
      xstride[j] *= input_x_dims[k];
    }
    xout[j] = xstride[j] * xdim[j];
  }

  auto numel = input_x->numel();
  size_t pind = 0;
  std::vector<int> ind(ndim);
  for (int i = 0; i < numel; i++) {
    out_data[i] = input_x_data[pind];
    ind[0]++;
    pind += xstride[0];
    for (int j = 0; j < ndim - 1; j++) {
      if (ind[j] == xdim[j]) {
        ind[j + 1]++;
        ind[j] = 0;
        pind += xstride[j + 1];
        pind -= xout[j];
      } else {
        break;
      }
    }
  }
}

// Transpose
C
chonwhite 已提交
84 85 86 87 88 89 90 91 92 93 94
void TransposeCompute::Run() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<zynqmp::float16>();
  param.x->ZynqTensor()->invalidate();
  param.x->ZynqTensor()->unalignImage();
  if (param.x->dims().size() != 4) {
    transposeCompute(param);
  } else {
    param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor());
  }
}
95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144

// Transpose2
void Transpose2Compute::Run() {
  auto& param = this->Param<param_t>();
  param.output->mutable_data<float>();
  param.x->ZynqTensor()->invalidate();
  param.x->ZynqTensor()->unalignImage();
  if (param.x->dims().size() != 4) {
    transposeCompute(param);
  } else {
    param.output->ZynqTensor()->copyFrom(param.x->ZynqTensor());
  }
}

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

// Transpose
REGISTER_LITE_KERNEL(transpose,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::TransposeCompute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out",
                {LiteType::GetTensorTy(TARGET(kFPGA),
                                       PRECISION(kFP16),
                                       DATALAYOUT(kNHWC))})
    .Finalize();

// Transpose2
REGISTER_LITE_KERNEL(transpose2,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::Transpose2Compute,
                     def)
    .BindInput("X",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Out", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("XShape", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();