prior_box_compute.cc 5.6 KB
Newer Older
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#include <string>
#include <vector>

#include "lite/backends/fpga/KD/debugger.hpp"
#include "lite/kernels/fpga/prior_box_compute.h"

namespace paddle {
namespace lite {
namespace kernels {
namespace fpga {

using float16 = zynqmp::float16;

inline void ExpandAspectRatios(const std::vector<float>& input_aspect_ratior,
                               bool flip,
                               std::vector<float>* output_aspect_ratior) {
  constexpr float epsilon = 1e-6;
  output_aspect_ratior->clear();
  output_aspect_ratior->push_back(1.0f);
  for (size_t i = 0; i < input_aspect_ratior.size(); ++i) {
    float ar = input_aspect_ratior[i];
    bool already_exist = false;
    for (size_t j = 0; j < output_aspect_ratior->size(); ++j) {
      if (fabs(ar - output_aspect_ratior->at(j)) < epsilon) {
        already_exist = true;
        break;
      }
    }
    if (!already_exist) {
      output_aspect_ratior->push_back(ar);
      if (flip) {
        output_aspect_ratior->push_back(1.0f / ar);
      }
    }
  }
}

void PriorBoxCompute::PrepareForRun() {
  auto& param = this->Param<param_t>();
  bool is_flip = param.flip;
  bool is_clip = param.clip;
  std::vector<float> min_size = param.min_sizes;
  std::vector<float> max_size = param.max_sizes;
  std::vector<float> aspect_ratio = param.aspect_ratios;
  std::vector<float> variance = param.variances_;
  int img_w = param.img_w;
  int img_h = param.img_h;
  float step_w = param.step_w;
  float step_h = param.step_h;
  float offset = param.offset;
  std::vector<float> aspect_ratios_vec;
  ExpandAspectRatios(aspect_ratio, is_flip, &aspect_ratios_vec);
  size_t prior_num = aspect_ratios_vec.size() * min_size.size();
  prior_num += max_size.size();
  std::vector<std::string> order = param.order;
  bool min_max_aspect_ratios_order = param.min_max_aspect_ratios_order;

  int win1 = param.input->dims()[3];
  int hin1 = param.input->dims()[2];

  DDim shape_out({hin1, win1, prior_num, 4});
  param.boxes->Resize(shape_out);
  param.variances->Resize(shape_out);

  param.boxes->mutable_data<float>();
  param.variances->mutable_data<float>();
  zynqmp::PriorBoxParam& priobox_param = pe_.param();
  priobox_param.input = param.input->ZynqTensor();
  priobox_param.image = param.image->ZynqTensor();
  priobox_param.outputBoxes = param.boxes->ZynqTensor();
  priobox_param.outputVariances = param.variances->ZynqTensor();
  priobox_param.minSizes = param.min_sizes;
  priobox_param.maxSizes = param.max_sizes;
  priobox_param.aspectRatios = param.aspect_ratios;
  priobox_param.variances = param.variances_;
  priobox_param.minMaxAspectRatiosOrder = min_max_aspect_ratios_order;
  priobox_param.flip = param.flip;
  priobox_param.clip = param.clip;
  priobox_param.stepW = param.step_w;
  priobox_param.stepH = param.step_h;
  priobox_param.offset = param.offset;

  pe_.init();
  pe_.apply();
}

void PriorBoxCompute::Run() {
  pe_.dispatch();
#ifdef FPGA_PRINT_TENSOR
  zynqmp::PriorBoxParam& priobox_param = pe_.param();
  Debugger::get_instance().registerOutput("pb_boxes",
                                          priobox_param.outputBoxes);
  Debugger::get_instance().registerOutput("pb_variances",
                                          priobox_param.outputVariances);
#endif
}

}  // namespace fpga
}  // namespace kernels
}  // namespace lite
}  // namespace paddle

REGISTER_LITE_KERNEL(prior_box,
                     kFPGA,
                     kFP16,
                     kNHWC,
                     paddle::lite::kernels::fpga::PriorBoxCompute,
                     def)
    .BindInput("Input",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindInput("Image",
               {LiteType::GetTensorTy(TARGET(kFPGA),
                                      PRECISION(kFP16),
                                      DATALAYOUT(kNHWC))})
    .BindOutput("Boxes", {LiteType::GetTensorTy(TARGET(kARM))})
    .BindOutput("Variances", {LiteType::GetTensorTy(TARGET(kARM))})
    .Finalize();
C
chonwhite 已提交
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157

// REGISTER_LITE_KERNEL(prior_box,
//                      kFPGA,
//                      kFP16,
//                      kNHWC,
//                      paddle::lite::kernels::fpga::PriorBoxCompute,
//                      def)
//     .BindInput("Input",
//                {LiteType::GetTensorTy(TARGET(kFPGA),
//                                       PRECISION(kFP16),
//                                       DATALAYOUT(kNHWC))})
//     .BindInput("Image",
//                {LiteType::GetTensorTy(TARGET(kFPGA),
//                                       PRECISION(kFP16),
//                                       DATALAYOUT(kNHWC))})
//     .BindOutput("Boxes",
//                {LiteType::GetTensorTy(TARGET(kFPGA),
//                                       PRECISION(kFP16),
//                                       DATALAYOUT(kNHWC))})
//     .BindOutput("Variances",
//                {LiteType::GetTensorTy(TARGET(kFPGA),
//                                       PRECISION(kFP16),
//                                       DATALAYOUT(kNHWC))})
//     .Finalize();