lite_tensor.h 9.0 KB
Newer Older
Y
Yan Chunwei 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23
// Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

#pragma once

#include <algorithm>
#include <functional>  // for multiplies
#include <memory>
#include <numeric>
#include <string>
#include <vector>

24
#include "lite/backends/fpga/KD/tensor.hpp"
Y
Yan Chunwei 已提交
25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59
#include "lite/core/memory.h"

namespace paddle {
namespace lite {

class DDimLite;
class TensorLite;

using DDim = lite::DDimLite;
using Tensor = lite::TensorLite;

class DDimLite {
 public:
  using value_type = int64_t;

  DDimLite() = default;

  explicit DDimLite(const std::vector<value_type> &x) { ConstructFrom(x); }

  void ConstructFrom(const std::vector<value_type> &x) { data_ = x; }

  value_type operator[](int offset) const { return data_[offset]; }
  value_type &operator[](int offset) { return data_[offset]; }
  std::vector<int64_t> Vectorize() const { return data_; }

  size_t size() const { return data_.size(); }
  bool empty() const { return data_.empty(); }

  value_type production() const;

  const std::vector<value_type> &data() const { return data_; }
  value_type count(int start, int end) const;

  DDimLite Slice(int start, int end) const;

60
  DDimLite Flatten2D(int col) const {
Y
Yan Chunwei 已提交
61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83
    return DDimLite(std::vector<value_type>(
        {Slice(0, col).production(), Slice(col, size()).production()}));
  }

  std::string repr() const;

  friend std::ostream &operator<<(std::ostream &os, const DDimLite &dims) {
    os << dims.repr();
    return os;
  }

  friend bool operator==(const DDimLite &a, const DDimLite &b) {
    if (a.size() != b.size()) return false;
    for (size_t i = 0; i < a.size(); i++) {
      if (a[i] != b[i]) return false;
    }
    return true;
  }

  friend bool operator!=(const DDimLite &a, const DDimLite &b) {
    return !(a == b);
  }

C
chonwhite 已提交
84
  ~DDimLite() {}
C
chonwhite 已提交
85

Y
Yan Chunwei 已提交
86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110
 private:
  std::vector<value_type> data_;
};

using LoD = std::vector<std::vector<uint64_t>>;

// A light-weight tensor implementation.
class TensorLite {
 public:
  TensorLite() : buffer_(std::make_shared<Buffer>()) {}

  template <typename DType, typename DimT, TargetType Target>
  void Assign(DType *data, const DimT &dim) {
    Resize(dim);
    auto *dst = mutable_data<DType, void>(Target);
    CopySync<Target>(
        dst, data, dim.production() * sizeof(DType), IoDirection::HtoD);
  }

  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
  const R *data() const {
T
TianXiaogang 已提交
111
    return zynq_tensor_->data<R>() + offset_;
Y
Yan Chunwei 已提交
112 113
  }

C
chonwhite 已提交
114
  void Resize(const DDimLite &ddim) { dims_ = ddim; }
Y
Yan Chunwei 已提交
115 116 117 118 119 120 121 122
  void Resize(const std::vector<int64_t> &x) { dims_ = DDimLite(x); }

  const DDimLite &dims() const { return dims_; }
  int64_t numel() const { return dims_.production(); }

  const LoD &lod() const { return lod_; }
  LoD *mutable_lod() { return &lod_; }

123 124 125 126 127 128 129
  void set_lod(const LoD &lod) { lod_ = lod; }

  PrecisionType precision() const { return precision_; }
  void set_precision(PrecisionType precision) { precision_ = precision; }

  bool persistable() const { return persistable_; }
  void set_persistable(bool persistable) { persistable_ = persistable; }
T
TianXiaogang 已提交
130

Y
Yan Chunwei 已提交
131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146
  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
  R *mutable_data();

  // T is the data type and R is the return type
  // For OpenCL, the return type can be cl::Buffer
  // and the data type can be float/int8_t.
  // For other devices, T and R may be the same type.
  template <typename T, typename R = T>
  R *mutable_data(TargetType target);
  void *mutable_data(size_t memory_size);
  void *mutable_data(TargetType target, size_t memory_size);

C
chonwhite 已提交
147 148 149
  const void *raw_data() const {
    return buffer_->data();
  }  // TODO(chonwhite) delete buffer;
Y
Yan Chunwei 已提交
150 151 152 153 154

  size_t data_size() const { return this->dims().production(); }

  size_t memory_size() const { return zynq_tensor_->memorySize(); }

T
TianXiaogang 已提交
155 156
  size_t offset() const { return offset_; }

C
chonwhite 已提交
157 158 159
  bool IsInitialized() const {
    return buffer_->data();
  }  // TODO(chonwhite) delete buffer;
Y
Yan Chunwei 已提交
160 161 162 163 164 165

  // Other share data to this.
  void ShareDataWith(const TensorLite &other);

  void CopyDataFrom(const TensorLite &other);

166 167 168
  template <typename T>
  TensorLite Slice(int64_t begin, int64_t end) const;

T
TianXiaogang 已提交
169 170 171
  template <typename T>
  void Slice(TensorLite &dst, int64_t begin, int64_t end) const;  // NOLINT

Y
Yan Chunwei 已提交
172 173
  TargetType target() const { return target_; }

174 175 176
  // template <typename T>
  // TensorLite Slice(int64_t begin, int64_t end) const;

C
chonwhite 已提交
177
  zynqmp::Tensor *ZynqTensor() const { return zynq_tensor_.get(); }
Y
Yan Chunwei 已提交
178 179 180 181 182 183 184 185 186 187 188 189 190

  friend std::ostream &operator<<(std::ostream &os, const TensorLite &tensor) {
    os << "Tensor:" << '\n';
    os << "dim: " << tensor.dims() << '\n';
    for (int i = 0; i < tensor.dims().production(); i++) {
      os << tensor.template data<float>()[i] << " ";
    }
    os << "\n";
    return os;
  }

 private:
  TargetType target_{TargetType::kHost};
T
TianXiaogang 已提交
191 192 193 194 195 196 197 198 199

  // precision_ and persistable_ are only used for persistable vars.
  // If your tensor wants to be saved and loaded correctly, you must
  // set values of precision_ and persistable_ after updating it.
  // If your tensor is just a temp tensor, such as activations,
  // you can ignore these two attributes.
  PrecisionType precision_{PrecisionType::kUnk};
  bool persistable_{false};

Y
Yan Chunwei 已提交
200 201 202 203
  DDimLite dims_;
  std::shared_ptr<Buffer> buffer_;
  LoD lod_;
  size_t memory_size_{};
204 205
  size_t offset_{0};

C
chonwhite 已提交
206
  std::shared_ptr<zynqmp::Tensor> zynq_tensor_;
Y
Yan Chunwei 已提交
207 208 209 210 211

  template <typename T>
  void mutable_data_internal();
};

C
chonwhite 已提交
212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233
template <typename T>
zynqmp::DataType get_date_type() {
  zynqmp::DataType data_type = zynqmp::FP32;
  if (typeid(T) == typeid(float)) {
    data_type = zynqmp::FP32;
  }
  if (typeid(T) == typeid(zynqmp::float16)) {
    data_type = zynqmp::FP16;
  }
  if (typeid(T) == typeid(int)) {
    data_type = zynqmp::INT32;
  }
  if (typeid(T) == typeid(int32_t)) {
    data_type = zynqmp::INT32;
  }
  if (typeid(T) == typeid(int8_t)) {
    data_type = zynqmp::INT8;
  }

  return data_type;
}

Y
Yan Chunwei 已提交
234 235 236 237 238 239 240 241
template <typename T, typename R>
R *TensorLite::mutable_data() {
  std::vector<int> v;
  for (int i = 0; i < dims_.size(); i++) {
    v.push_back(dims_[i]);
  }
  zynqmp::LayoutType layout_type = zynqmp::NCHW;
  switch (v.size()) {
T
TianXiaogang 已提交
242 243 244
    case 0:
      layout_type = zynqmp::None;
      break;
Y
Yan Chunwei 已提交
245 246 247 248 249 250 251 252 253 254 255 256 257 258
    case 1:
      layout_type = zynqmp::N;
      break;
    case 2:
      layout_type = zynqmp::NC;
      break;
    case 3:
      layout_type = zynqmp::NHW;
      break;
    case 4:
      layout_type = zynqmp::NCHW;
      break;
  }
  zynqmp::Shape input_shape(layout_type, v);
C
chonwhite 已提交
259 260
  zynqmp::DataType data_type = get_date_type<T>();

C
chonwhite 已提交
261 262 263 264
  if (zynq_tensor_.get() == nullptr) {
    zynq_tensor_.reset(new zynqmp::Tensor());
  }

Y
Yan Chunwei 已提交
265 266 267 268 269 270 271 272 273
  return zynq_tensor_->mutableData<R>(data_type, input_shape);
}

template <typename T, typename R>
R *TensorLite::mutable_data(TargetType target) {
  target_ = target;
  return mutable_data<T>();
}

274 275
template <typename T>
TensorLite TensorLite::Slice(int64_t begin, int64_t end) const {
T
TianXiaogang 已提交
276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303
  throw - 1;
  CHECK_GE(begin, 0);
  CHECK_LE(end, dims_[0]);
  CHECK_LT(begin, end);
  if (dims_[0] == 1) {
    return *this;
  } else {
    int64_t base = numel() / dims_[0];

    TensorLite dst;
    dst.target_ = target_;
    auto dst_dims = dims_;
    dst_dims[0] = end - begin;
    dst.Resize(dst_dims);
    void *dst_data = dst.mutable_data<T>();

    T *src_data = const_cast<T *>(data<T>());
    memcpy(dst_data,
           src_data + static_cast<size_t>(begin * base) * sizeof(T),
           dst_dims.production() * sizeof(T));
    dst.ZynqTensor()->saveToFile("_slice", true);

    return dst;
  }
}

template <typename T>
void TensorLite::Slice(TensorLite &dst, int64_t begin, int64_t end) const {
C
chonwhite 已提交
304
  // TODO(chonwhite) delete this function;
T
TianXiaogang 已提交
305 306 307
  CHECK_GE(begin, 0);
  CHECK_LE(end, dims_[0]);
  CHECK_LT(begin, end);
308 309 310 311 312

  dst.target_ = target_;
  auto dst_dims = dims_;
  dst_dims[0] = end - begin;
  dst.Resize(dst_dims);
T
TianXiaogang 已提交
313 314 315 316 317 318 319 320
  void *dst_data = dst.mutable_data<T>();

  int64_t base = numel() / dims_[0];

  T *src_data = const_cast<T *>(data<T>());
  memcpy(dst_data,
         src_data + static_cast<size_t>(begin * dst_dims.production()),
         dst_dims.production() * sizeof(T));
321
}
T
TianXiaogang 已提交
322 323 324 325 326 327 328 329

template <typename TensorT>
bool TensorCompareWith(const TensorT &a, const TensorT &b) {
  if (a.dims() != b.dims()) return false;
  if (memcmp(a.raw_data(), b.raw_data(), a.data_size()) != 0) return false;
  return true;
}

Y
Yan Chunwei 已提交
330 331
}  // namespace lite
}  // namespace paddle