gemm.h 4.5 KB
Newer Older
W
wangliu 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
Z
zhaojiaying01 已提交
14 15 16

#pragma once

Z
zhaojiaying01 已提交
17 18 19 20
// 矩阵取值运算宏,假设矩阵按行存储
#define A(i, j) A[(i)*lda + (j)]
#define B(i, j) B[(i)*ldb + (j)]
#define C(i, j) C[(i)*ldc + (j)]
Z
zhaojiaying01 已提交
21 22

#define MR 4
23
#define NR 8
Z
zhaojiaying01 已提交
24

W
wangliu 已提交
25
#define s_min(i, j) ((i) < (j) ? (i) : (j))
Z
zhaojiaying01 已提交
26 27 28 29 30

namespace paddle_mobile {
namespace operators {
namespace math {

Z
zhaojiaying01 已提交
31
// 将 A 矩阵分块复制到连续内存(ColMajor)
Z
zhaojiaying01 已提交
32
void PackMatrixA(int m, int k, int m_tail, const float *A, int lda,
Z
zhaojiaying01 已提交
33 34
                 float *buffer);

Z
zhaojiaying01 已提交
35
// 将 B 矩阵分块复制到连续内存(ColMajor)
Z
zhaojiaying01 已提交
36
void PackMatrixB(int k, int n, int n_tail, const float *B, int ldb,
Z
zhaojiaying01 已提交
37 38
                 float *buffer);

Z
zhaojiaying01 已提交
39
// 将 A 矩阵分块复制到连续内存(RowMajor)
Z
zhaojiaying01 已提交
40
void PackMatrixA_(int m, int k, int m_tail, const float *A, int lda,
Z
zhaojiaying01 已提交
41 42 43
                  float *buffer);

// 将 B 矩阵分块复制到连续内存(RowMajor)
Z
zhaojiaying01 已提交
44
void PackMatrixB_(int k, int n, int n_tail, const float *B, int ldb,
Z
zhaojiaying01 已提交
45 46
                  float *buffer);

Z
zhaojiaying01 已提交
47
// 分块矩阵乘法
48 49 50 51 52 53
void InnerKernel(int mc, int nc, float alpha, const float *a, const float *b,
                 float beta, float *c, float *C, int ldc, bool relu);

void InnerKernelWithBn(int mc, int nc, float alpha, const float *a,
                       const float *b, float beta, float *c, float *C, int ldc,
                       bool relu, float *new_scale, float *new_bias);
Z
zhaojiaying01 已提交
54

55 56
// 向量矩阵乘法 (M = 1)
void VectorKernel(int m, int n, int k, float alpha, const float *A, int lda,
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98
                  const float *B, int ldb, float beta, float *C, int ldc,
                  bool relu);

void VectorKernelWithBn(int m, int n, int k, float alpha, const float *A,
                        int lda, const float *B, int ldb, float beta, float *C,
                        int ldc, bool relu, float *new_scale, float *new_bias);

// 计算一个更小的 C 矩阵分块
void AddDot4x4(int k, const float *a, const float *b, float *c, int ldc);
void AddDot4x8(int k, const float *a, const float *b, float *c, int ldc);

// 分块矩阵乘法结果回写
// C = A * B
void WriteBasic(int mc, int nc, float *c, float *C, int ldc);
// C = alpha * A * B + beta * C
void WriteWithAlphaBeta(int mc, int nc, float *c, float *C, int ldc);
// C = A * B + C
void WriteWithAdd(int mc, int nc, float *c, float *C, int ldc);
// C = A * B + C, relu(C)
void WriteWithAddRelu(int mc, int nc, float *c, float *C, int ldc);
// C = A * B, batchnorm(C)
void WriteWithBn(int mc, int nc, float *c, float *C, int ldc, float *new_scale,
                 float *new_bias);
// C = A * B, batchnorm(C), relu(C)
void WriteWithBnRelu(int mc, int nc, float *c, float *C, int ldc,
                     float *new_scale, float *new_bias);

// 向量矩阵乘法结果回写
// C = A * B
void VecWriteBasic(int n, float *c, float *C, int ldc);
// C = alpha * A * B + beta * C
void VecWriteWithAlphaBeta(int n, float *c, float *C, int ldc);
// C = A * B + C
void VecWriteWithAdd(int n, float *c, float *C, int ldc);
// C = A * B + C, relu(C)
void VecWriteWithAddRelu(int n, float *c, float *C, int ldc);
// C = A * B, batchnorm(C)
void VecWriteWithBn(int n, float *c, float *C, int ldc, float *new_scale,
                    float *new_bias);
// C = A * B, batchnorm(C), relu(C)
void VecWriteWithBnRelu(int n, float *c, float *C, int ldc, float *new_scale,
                        float *new_bias);
L
liuruilong 已提交
99

Z
zhaojiaying01 已提交
100
// 32位 float 矩阵乘法
101 102
void Sgemm(int m, int n, int k, float alpha, const float *A, int lda,
           const float *B, int ldb, float beta, float *C, int ldc, bool relu);
Z
zhaojiaying01 已提交
103

104 105 106 107
// 32位 float 矩阵乘法, 并对结果进行 batchnrom
void SgemmWithBn(int m, int n, int k, float alpha, const float *A, int lda,
                 const float *B, int ldb, float beta, float *C, int ldc,
                 bool relu, float *new_scale, float *new_bias);
L
liuruilong 已提交
108

Z
zhaojiaying01 已提交
109 110 111 112 113 114 115
// 64位 double 矩阵乘法
void dgemm(int m, int n, int k, float alpha, const double *A, int lda,
           const double *B, int ldb, float beta, double *C, int ldc);

}  // namespace math
}  // namespace operators
}  // namespace paddle_mobile