未验证 提交 e8c7e300 编写于 作者: S sys1874 提交者: GitHub

Merge pull request #134 from sys1874/main

update unimp_large
...@@ -2,6 +2,15 @@ ...@@ -2,6 +2,15 @@
This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](https://arxiv.org/pdf/2009.03509.pdf). The steps are: This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](https://arxiv.org/pdf/2009.03509.pdf). The steps are:
### Note!
We propose **UniMP_large**, where we extend our base model's width by increasing ```head_num```, and make it deeper by incorporating [APPNP](https://www.in.tum.de/daml/ppnp/) . Moreover, we firstly propose a new **Attention based APPNP** to further improve our model's performance.
To_do list:
- [x] UniMP_large in Arxiv
- [ ] UniMP_large in Products
- [ ] UniMP_large in Proteins
- [ ] UniMP_xxlarge
### Install environment: ### Install environment:
``` ```
git clone https://github.com/PaddlePaddle/PGL.git git clone https://github.com/PaddlePaddle/PGL.git
...@@ -13,6 +22,7 @@ This experiment is based on stanford OGB (1.2.1) benchmark. The description of ...@@ -13,6 +22,7 @@ This experiment is based on stanford OGB (1.2.1) benchmark. The description of
### Arxiv dataset: ### Arxiv dataset:
1. ```python main_arxiv.py --place 0 --log_file arxiv_baseline.txt``` to get the baseline result of arxiv dataset. 1. ```python main_arxiv.py --place 0 --log_file arxiv_baseline.txt``` to get the baseline result of arxiv dataset.
2. ```python main_arxiv.py --place 0 --use_label_e --log_file arxiv_unimp.txt``` to get the UniMP result of arxiv dataset. 2. ```python main_arxiv.py --place 0 --use_label_e --log_file arxiv_unimp.txt``` to get the UniMP result of arxiv dataset.
3. ```python main_arxiv_large.py --place 0 --use_label_e --log_file arxiv_unimp_large.txt``` to get the UniMP_large result of arxiv dataset.
### Products dataset: ### Products dataset:
1. ```python main_product.py --place 0 --log_file product_unimp.txt --use_label_e``` to get the UniMP result of Products dataset. 1. ```python main_product.py --place 0 --log_file product_unimp.txt --use_label_e``` to get the UniMP result of Products dataset.
...@@ -41,6 +51,7 @@ Arxiv_dataset(Full Batch): Products_dataset(NeighborSampler): ...@@ -41,6 +51,7 @@ Arxiv_dataset(Full Batch): Products_dataset(NeighborSampler):
| ------------------ |-------------- | --------------- | -------------- |----------| | ------------------ |-------------- | --------------- | -------------- |----------|
| Arxiv_baseline | 0.7225 ± 0.0015 | 0.7367 ± 0.0012 | 468,369 | Tesla V100 (32GB) | | Arxiv_baseline | 0.7225 ± 0.0015 | 0.7367 ± 0.0012 | 468,369 | Tesla V100 (32GB) |
| Arxiv_UniMP | 0.7311 ± 0.0021 | 0.7450 ± 0.0005 | 473,489 | Tesla V100 (32GB) | | Arxiv_UniMP | 0.7311 ± 0.0021 | 0.7450 ± 0.0005 | 473,489 | Tesla V100 (32GB) |
| Arxiv_UniMP_large | 0.7379 ± 0.0014 | 0.7475 ± 0.0008 | 1,162,515 | Tesla V100 (32GB) |
| Products_baseline | 0.8023 ± 0.0026 | 0.9286 ± 0.0017 | 1,470,905 | Tesla V100 (32GB) | | Products_baseline | 0.8023 ± 0.0026 | 0.9286 ± 0.0017 | 1,470,905 | Tesla V100 (32GB) |
| Products_UniMP | 0.8256 ± 0.0031 | 0.9308 ± 0.0017 | 1,475,605 | Tesla V100 (32GB) | | Products_UniMP | 0.8256 ± 0.0031 | 0.9308 ± 0.0017 | 1,475,605 | Tesla V100 (32GB) |
| Proteins_baseline | 0.8611 ± 0.0017 | 0.9128 ± 0.0007 | 1,879,664 | Tesla V100 (32GB) | | Proteins_baseline | 0.8611 ± 0.0017 | 0.9128 ± 0.0007 | 1,879,664 | Tesla V100 (32GB) |
......
import math
import torch
import paddle
import pgl
import numpy as np
import paddle.fluid as F
import paddle.fluid.layers as L
from pgl.contrib.ogb.nodeproppred.dataset_pgl import PglNodePropPredDataset
from ogb.nodeproppred import Evaluator
from utils import to_undirected, add_self_loop, linear_warmup_decay
from model_large import Arxiv_baseline_model, Arxiv_label_embedding_model
from optimization import optimization
import argparse
from tqdm import tqdm
evaluator = Evaluator(name='ogbn-arxiv')
def get_config():
parser = argparse.ArgumentParser()
## model_base_arg
model_group=parser.add_argument_group('model_base_arg')
model_group.add_argument('--num_layers', default=3, type=int)
model_group.add_argument('--hidden_size', default=80, type=int)
model_group.add_argument('--num_heads', default=5, type=int)
model_group.add_argument('--dropout', default=0.3, type=float)
model_group.add_argument('--attn_dropout', default=0.1, type=float)
## embed_arg
embed_group=parser.add_argument_group('embed_arg')
embed_group.add_argument('--use_label_e', action='store_true')
embed_group.add_argument('--label_rate', default=0.65, type=float)
## train_arg
train_group=parser.add_argument_group('train_arg')
train_group.add_argument('--runs', default=10, type=int )
train_group.add_argument('--epochs', default=2000, type=int )
train_group.add_argument('--lr', default=0.001, type=float)
train_group.add_argument('--place', default=-1, type=int)
train_group.add_argument('--log_file', default='result_arxiv.txt', type=str)
return parser.parse_args()
def optimizer_func(lr=0.01):
return F.optimizer.AdamOptimizer(learning_rate=lr, regularization=F.regularizer.L2Decay(
regularization_coeff=0.0005))
def eval_test(parser, program, model, test_exe, graph, y_true, split_idx):
feed_dict=model.gw.to_feed(graph)
if parser.use_label_e:
feed_dict['label']=y_true
feed_dict['label_idx']=split_idx['train']
feed_dict['attn_drop']=-1
avg_cost_np = test_exe.run(
program=program,
feed=feed_dict,
fetch_list=[model.out_feat])
y_pred=avg_cost_np[0].argmax(axis=-1)
y_pred=np.expand_dims(y_pred, 1)
train_acc = evaluator.eval({
'y_true': y_true[split_idx['train']],
'y_pred': y_pred[split_idx['train']],
})['acc']
val_acc = evaluator.eval({
'y_true': y_true[split_idx['valid']],
'y_pred': y_pred[split_idx['valid']],
})['acc']
test_acc = evaluator.eval({
'y_true': y_true[split_idx['test']],
'y_pred': y_pred[split_idx['test']],
})['acc']
return train_acc, val_acc, test_acc
def train_loop(parser, start_program, main_program, test_program,
model, graph, label, split_idx, exe, run_id, wf=None):
exe.run(start_program)
max_acc=0
max_step=0
max_val_acc=0
max_cor_acc=0
max_cor_step=0
for epoch_id in tqdm(range(parser.epochs)):
if parser.use_label_e:
feed_dict=model.gw.to_feed(graph)
train_idx_temp = split_idx['train']
np.random.shuffle(train_idx_temp)
label_idx=train_idx_temp[ :int(parser.label_rate*len(train_idx_temp))]
unlabel_idx=train_idx_temp[int(parser.label_rate*len(train_idx_temp)): ]
feed_dict['label']=label
feed_dict['label_idx']= label_idx
feed_dict['train_idx']= unlabel_idx
feed_dict['attn_drop']=parser.attn_dropout
else:
feed_dict=model.gw.to_feed(graph)
feed_dict['label']=label
feed_dict['train_idx']= split_idx['train']
loss = exe.run(main_program,
feed=feed_dict,
fetch_list=[model.avg_cost])
loss = loss[0]
result = eval_test(parser, test_program, model, exe, graph, label, split_idx)
train_acc, valid_acc, test_acc = result
max_val_acc=max(valid_acc, max_val_acc)
if max_val_acc==valid_acc:
max_cor_acc=test_acc
max_cor_step=epoch_id
if max_acc==result[2]:
max_step=epoch_id
result_t=(f'Run: {run_id:02d}, '
f'Epoch: {epoch_id:02d}, '
f'Loss: {loss[0]:.4f}, '
f'Train: {100 * train_acc:.2f}%, '
f'Valid: {100 * valid_acc:.2f}%, '
f'Test: {100 * test_acc:.2f}% \n'
f'max_val: {100 * max_val_acc:.2f}%, '
f'max_val_Test: {100 * max_cor_acc:.2f}%, '
f'max_val_step: {max_cor_step}\n'
)
if (epoch_id+1)%100==0:
print(result_t)
wf.write(result_t)
wf.write('\n')
wf.flush()
return max_cor_acc
if __name__ == '__main__':
parser = get_config()
print('===========args==============')
print(parser)
print('=============================')
startup_prog = F.default_startup_program()
train_prog = F.default_main_program()
place=F.CPUPlace() if parser.place <0 else F.CUDAPlace(parser.place)
dataset = PglNodePropPredDataset(name="ogbn-arxiv")
split_idx=dataset.get_idx_split()
graph, label = dataset[0]
print(label.shape)
graph=to_undirected(graph)
graph=add_self_loop(graph)
with F.unique_name.guard():
with F.program_guard(train_prog, startup_prog):
gw = pgl.graph_wrapper.GraphWrapper(
name="arxiv", node_feat=graph.node_feat_info(), place=place)
if parser.use_label_e:
model=Arxiv_label_embedding_model(gw, parser.hidden_size, parser.num_heads,
parser.dropout, parser.num_layers)
else:
model=Arxiv_baseline_model(gw, parser.hidden_size, parser.num_heads,
parser.dropout, parser.num_layers)
test_prog=train_prog.clone(for_test=True)
model.train_program()
adam_optimizer = optimizer_func(parser.lr)
adam_optimizer = F.optimizer.RecomputeOptimizer(adam_optimizer)
adam_optimizer._set_checkpoints(model.checkpoints)
adam_optimizer.minimize(model.avg_cost)
exe = F.Executor(place)
wf = open(parser.log_file, 'w', encoding='utf-8')
total_test_acc=0.0
for run_i in range(parser.runs):
total_test_acc+=train_loop(parser, startup_prog, train_prog, test_prog, model,
graph, label, split_idx, exe, run_i, wf)
wf.write(f'average: {100 * (total_test_acc/parser.runs):.2f}%')
wf.close()
# Runned 10 times
# Val Accs: [74.64, 74.74, 74.71, 74.83, 74.82, 74.77, 74.75, 74.86, 74.6, 74.76]
# Test Accs: [73.79, 73.82, 74.0, 73.85, 74.02, 73.67, 73.65, 73.87, 73.66, 73.6]
# Average val accuracy: 74.74799999999999 ± 0.0775628777186617
# Average test accuracy: 73.793 ± 0.13957435294494433
# params: 1162515
\ No newline at end of file
'''build label embedding model
'''
import math
import pgl
import paddle.fluid as F
import paddle.fluid.layers as L
from pgl.utils import paddle_helper
from module.transformer_gat_pgl import transformer_gat_pgl
from module.model_unimp_large import graph_transformer, linear, attn_appnp
class Arxiv_baseline_model():
def __init__(self, gw, hidden_size, num_heads, dropout, num_layers):
'''Arxiv_baseline_model
'''
self.gw=gw
self.hidden_size=hidden_size
self.num_heads= num_heads
self.dropout= dropout
self.num_layers=num_layers
self.out_size=40
self.embed_size=128
self.checkpoints=[]
self.build_model()
def embed_input(self, feature):
lay_norm_attr = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=1))
lay_norm_bias = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=0))
feature = L.layer_norm(feature, name='layer_norm_feature_input',
param_attr=lay_norm_attr,
bias_attr=lay_norm_bias)
return feature
def build_model(self):
feature_batch = self.embed_input(self.gw.node_feat['feat'])
feature_batch = L.dropout(feature_batch, dropout_prob=self.dropout,
dropout_implementation='upscale_in_train')
for i in range(self.num_layers - 1):
feature_batch = graph_transformer(str(i), self.gw, feature_batch,
hidden_size=self.hidden_size,
num_heads=self.num_heads,
concat=True, skip_feat=True,
layer_norm=True, relu=True, gate=True)
if self.dropout > 0:
feature_batch = L.dropout(feature_batch, dropout_prob=self.dropout,
dropout_implementation='upscale_in_train')
self.checkpoints.append(feature_batch)
feature_batch = graph_transformer(str(self.num_layers - 1), self.gw, feature_batch,
hidden_size=self.out_size,
num_heads=self.num_heads,
concat=False, skip_feat=True,
layer_norm=False, relu=False, gate=True)
self.checkpoints.append(feature_batch)
self.out_feat = feature_batch
def train_program(self,):
label = F.data(name="label", shape=[None, 1], dtype="int64")
train_idx = F.data(name='train_idx', shape=[None], dtype="int64")
prediction = L.gather(self.out_feat, train_idx, overwrite=False)
label = L.gather(label, train_idx, overwrite=False)
cost = L.softmax_with_cross_entropy(logits=prediction, label=label)
avg_cost = L.mean(cost)
self.avg_cost = avg_cost
class Arxiv_label_embedding_model():
def __init__(self, gw, hidden_size, num_heads, dropout, num_layers):
'''Arxiv_label_embedding_model
'''
self.gw = gw
self.hidden_size = hidden_size
self.num_heads = num_heads
self.dropout = dropout
self.num_layers = num_layers
self.out_size = 40
self.embed_size = 128
self.checkpoints = []
self.build_model()
def label_embed_input(self, feature):
label = F.data(name="label", shape=[None, 1], dtype="int64")
label_idx = F.data(name='label_idx', shape=[None], dtype="int64")
label = L.reshape(label, shape=[-1])
label = L.gather(label, label_idx, overwrite=False)
lay_norm_attr = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=1))
lay_norm_bias = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=0))
feature = L.layer_norm(feature, name='layer_norm_feature_input1',
param_attr=lay_norm_attr,
bias_attr=lay_norm_bias)
embed_attr = F.ParamAttr(initializer=F.initializer.NormalInitializer(loc=0.0, scale=1.0))
embed = F.embedding(input=label, size=(self.out_size, self.embed_size), param_attr=embed_attr )
lay_norm_attr = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=1))
lay_norm_bias = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=0))
embed = L.layer_norm(embed, name='layer_norm_feature_input2',
param_attr=lay_norm_attr,
bias_attr=lay_norm_bias)
embed = L.relu(embed)
feature_label = L.gather(feature, label_idx, overwrite=False)
feature_label = feature_label + embed
feature = L.scatter(feature, label_idx, feature_label, overwrite=True)
return feature
def build_model(self):
label_feature = self.label_embed_input(self.gw.node_feat['feat'])
feature_batch = L.dropout(label_feature, dropout_prob=self.dropout,
dropout_implementation='upscale_in_train')
for i in range(self.num_layers - 1):
feature_batch, _, cks = graph_transformer(str(i), self.gw, feature_batch,
hidden_size=self.hidden_size,
num_heads=self.num_heads,
attn_drop=True,
concat=True, skip_feat=True,
layer_norm=True, relu=True, gate=True)
if self.dropout > 0:
feature_batch = L.dropout(feature_batch, dropout_prob=self.dropout,
dropout_implementation='upscale_in_train')
self.checkpoints = self.checkpoints + cks
feature_batch, attn, cks = graph_transformer(str(self.num_layers - 1), self.gw, feature_batch,
hidden_size=self.out_size,
num_heads=self.num_heads+1,
concat=False, skip_feat=True,
layer_norm=False, relu=False, gate=True)
self.checkpoints.append(feature_batch)
feature_batch = attn_appnp(self.gw, feature_batch, attn, alpha=0.2, k_hop=10)
self.checkpoints.append(feature_batch)
self.out_feat = feature_batch
def train_program(self,):
label = F.data(name="label", shape=[None, 1], dtype="int64")
train_idx = F.data(name='train_idx', shape=[None], dtype="int64")
prediction = L.gather(self.out_feat, train_idx, overwrite=False)
label = L.gather(label, train_idx, overwrite=False)
cost = L.softmax_with_cross_entropy(logits=prediction, label=label)
avg_cost = L.mean(cost)
self.avg_cost = avg_cost
import pgl
import paddle.fluid as F
import paddle.fluid.layers as L
from pgl.utils import paddle_helper
from pgl import message_passing
import math
def graph_transformer(name, gw,
feature,
hidden_size,
num_heads=4,
attn_drop=False,
edge_feature=None,
concat=True,
skip_feat=True,
gate=False,
layer_norm=True,
relu=True,
is_test=False):
"""Implementation of graph Transformer from UniMP
This is an implementation of the paper Unified Massage Passing Model for Semi-Supervised Classification
(https://arxiv.org/abs/2009.03509).
Args:
name: Granph Transformer layer names.
gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
feature: A tensor with shape (num_nodes, feature_size).
hidden_size: The hidden size for graph transformer.
num_heads: The head number in graph transformer.
attn_drop: Dropout rate for attention.
edge_feature: A tensor with shape (num_edges, feature_size).
concat: Reshape the output (num_nodes, num_heads, hidden_size) by concat (num_nodes, hidden_size * num_heads) or mean (num_nodes, hidden_size)
skip_feat: Whether use skip connect
gate: Whether add skip_feat and output up with gate weight
layer_norm: Whether use layer_norm for output
relu: Whether use relu activation for output
is_test: Whether in test phrase.
Return:
A tensor with shape (num_nodes, hidden_size * num_heads) or (num_nodes, hidden_size)
"""
def send_attention(src_feat, dst_feat, edge_feat):
if edge_feat is None or not edge_feat:
output = src_feat["k_h"] * dst_feat["q_h"]
output = L.reduce_sum(output, -1)
output = output / (hidden_size ** 0.5)
# alpha = paddle_helper.sequence_softmax(output)
return {"alpha": output, "v": src_feat["v_h"]} # batch x h batch x h x feat
else:
edge_feat = edge_feat["edge"]
edge_feat = L.reshape(edge_feat, [-1, num_heads, hidden_size])
output = (src_feat["k_h"] + edge_feat) * dst_feat["q_h"]
output = L.reduce_sum(output, -1)
output = output / (hidden_size ** 0.5)
# alpha = paddle_helper.sequence_softmax(output)
return {"alpha": output, "v": (src_feat["v_h"] + edge_feat)} # batch x h batch x h x feat
class Reduce_attention():
def __init__(self,):
self.alpha = None
def __call__(self, msg):
alpha = msg["alpha"] # lod-tensor (batch_size, num_heads)
if attn_drop:
old_h = alpha
dropout = F.data(name='attn_drop', shape=[1], dtype="int64")
u = L.uniform_random(shape=L.cast(L.shape(alpha)[:1], 'int64'), min=0., max=1.)
keeped = L.cast(u > dropout, dtype="float32")
self_attn_mask = L.scale(x=keeped, scale=10000.0, bias=-1.0, bias_after_scale=False)
n_head_self_attn_mask = L.stack( x=[self_attn_mask] * num_heads, axis=1)
n_head_self_attn_mask.stop_gradient = True
alpha = n_head_self_attn_mask+ alpha
alpha = L.lod_reset(alpha, old_h)
h = msg["v"]
alpha = paddle_helper.sequence_softmax(alpha)
self.alpha = alpha
old_h = h
h = h * alpha
h = L.lod_reset(h, old_h)
h = L.sequence_pool(h, "sum")
if concat:
h = L.reshape(h, [-1, num_heads * hidden_size])
else:
h = L.reduce_mean(h, dim=1)
return h
reduce_attention = Reduce_attention()
q = linear(feature, hidden_size * num_heads, name=name + '_q_weight', init_type='gcn')
k = linear(feature, hidden_size * num_heads, name=name + '_k_weight', init_type='gcn')
v = linear(feature, hidden_size * num_heads, name=name + '_v_weight', init_type='gcn')
reshape_q = L.reshape(q, [-1, num_heads, hidden_size])
reshape_k = L.reshape(k, [-1, num_heads, hidden_size])
reshape_v = L.reshape(v, [-1, num_heads, hidden_size])
msg = gw.send(
send_attention,
nfeat_list=[("q_h", reshape_q), ("k_h", reshape_k),
("v_h", reshape_v)],
efeat_list=edge_feature)
out_feat = gw.recv(msg, reduce_attention)
checkpoints=[out_feat]
if skip_feat:
if concat:
out_feat, cks = appnp(gw, out_feat, k_hop=1)
# out_feat, cks = appnp(gw, out_feat, k_hop=3)
checkpoints.append(out_feat)
# The UniMP-xxlarge will come soon.
# out_feat, cks = appnp(gw, out_feat, k_hop=6)
# out_feat, cks = appnp(gw, out_feat, k_hop=9)
# checkpoints = checkpoints + cks
skip_feature = linear(feature, hidden_size * num_heads, name=name + '_skip_weight', init_type='lin')
else:
skip_feature = linear(feature, hidden_size, name=name + '_skip_weight', init_type='lin')
if gate:
temp_output = L.concat([skip_feature, out_feat, out_feat - skip_feature], axis=-1)
gate_f = L.sigmoid(linear(temp_output, 1, name=name + '_gate_weight', init_type='lin'))
out_feat = skip_feature * gate_f + out_feat * (1 - gate_f)
else:
out_feat = skip_feature + out_feat
if layer_norm:
lay_norm_attr = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=1))
lay_norm_bias = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=0))
out_feat = L.layer_norm(out_feat, name=name + '_layer_norm',
param_attr=lay_norm_attr,
bias_attr=lay_norm_bias)
if relu:
out_feat = L.relu(out_feat)
return out_feat, reduce_attention.alpha, checkpoints
def appnp(gw, feature, alpha=0.2, k_hop=10):
"""Implementation of APPNP of "Predict then Propagate: Graph Neural Networks
meet Personalized PageRank" (ICLR 2019).
Args:
gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
feature: A tensor with shape (num_nodes, feature_size).
edge_dropout: Edge dropout rate.
k_hop: K Steps for Propagation
Return:
A tensor with shape (num_nodes, hidden_size)
"""
def send_src_copy(src_feat, dst_feat, edge_feat):
feature = src_feat["h"]
return feature
def get_norm(indegree):
float_degree = L.cast(indegree, dtype="float32")
float_degree = L.clamp(float_degree, min=1.0)
norm = L.pow(float_degree, factor=-0.5)
return norm
cks = []
h0 = feature
ngw = gw
norm = get_norm(ngw.indegree())
for i in range(k_hop):
feature = feature * norm
msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
feature = gw.recv(msg, "sum")
feature = feature * norm
feature = feature * (1 - alpha) + h0 * alpha
if (i+1) % 3 == 0:
cks.append(feature)
return feature, cks
def attn_appnp(gw, feature, attn, alpha=0.2, k_hop=10):
"""Attention based APPNP to Make model output deeper
Args:
gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
attn: Using the attntion as transition matrix for APPNP
feature: A tensor with shape (num_nodes, feature_size).
k_hop: K Steps for Propagation
Return:
A tensor with shape (num_nodes, hidden_size)
"""
def send_src_copy(src_feat, dst_feat, edge_feat):
feature = src_feat["h"]
return feature
h0 = feature
attn = L.reduce_mean(attn, 1)
for i in range(k_hop):
msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
msg = msg * attn
feature = gw.recv(msg, "sum")
feature = feature * (1 - alpha) + h0 * alpha
return feature
def linear(input, hidden_size, name, with_bias=True, init_type='gcn'):
"""fluid.layers.fc with different init_type
"""
if init_type == 'gcn':
fc_w_attr = F.ParamAttr(initializer=F.initializer.XavierInitializer())
fc_bias_attr = F.ParamAttr(initializer=F.initializer.ConstantInitializer(0.0))
else:
fan_in = input.shape[-1]
bias_bound = 1.0 / math.sqrt(fan_in)
fc_bias_attr = F.ParamAttr(initializer=F.initializer.UniformInitializer(low=-bias_bound, high=bias_bound))
negative_slope = math.sqrt(5)
gain = math.sqrt(2.0 / (1 + negative_slope ** 2))
std = gain / math.sqrt(fan_in)
weight_bound = math.sqrt(3.0) * std
fc_w_attr = F.ParamAttr(initializer=F.initializer.UniformInitializer(low=-weight_bound, high=weight_bound))
if not with_bias:
fc_bias_attr = False
output = L.fc(input,
hidden_size,
param_attr=fc_w_attr,
name=name,
bias_attr=fc_bias_attr)
return output
\ No newline at end of file
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册