Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PGL
提交
cccac5f6
P
PGL
项目概览
PaddlePaddle
/
PGL
通知
76
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
11
列表
看板
标记
里程碑
合并请求
1
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PGL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
11
Issue
11
列表
看板
标记
里程碑
合并请求
1
合并请求
1
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
未验证
提交
cccac5f6
编写于
9月 24, 2020
作者:
H
Huang Zhengjie
提交者:
GitHub
9月 24, 2020
浏览文件
操作
浏览文件
下载
差异文件
Merge pull request #132 from Liwb5/dev
add mmap on hetergraph
上级
7e5da5f5
352e017c
变更
3
隐藏空白更改
内联
并排
Showing
3 changed file
with
224 addition
and
8 deletion
+224
-8
examples/GATNE/model.py
examples/GATNE/model.py
+6
-6
pgl/heter_graph.py
pgl/heter_graph.py
+45
-2
pgl/tests/test_MmapHeterGraph.py
pgl/tests/test_MmapHeterGraph.py
+173
-0
未找到文件。
examples/GATNE/model.py
浏览文件 @
cccac5f6
...
@@ -114,29 +114,29 @@ class GATNE(object):
...
@@ -114,29 +114,29 @@ class GATNE(object):
node_type_embed
=
fl
.
gather
(
node_type_embed
,
self
.
train_inputs
)
node_type_embed
=
fl
.
gather
(
node_type_embed
,
self
.
train_inputs
)
# M_r
# M_r
tn_initializer
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
self
.
embedding_size
))
trans_weights
=
fl
.
create_parameter
(
trans_weights
=
fl
.
create_parameter
(
shape
=
[
shape
=
[
self
.
edge_type_count
,
self
.
embedding_u_size
,
self
.
edge_type_count
,
self
.
embedding_u_size
,
self
.
embedding_size
//
self
.
att_head
self
.
embedding_size
//
self
.
att_head
],
],
attr
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
default_initializer
=
tn_initializer
,
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
self
.
embedding_size
)),
dtype
=
'float32'
,
dtype
=
'float32'
,
name
=
'trans_w'
)
name
=
'trans_w'
)
# W_r
# W_r
trans_weights_s1
=
fl
.
create_parameter
(
trans_weights_s1
=
fl
.
create_parameter
(
shape
=
[
self
.
edge_type_count
,
self
.
embedding_u_size
,
self
.
dim_a
],
shape
=
[
self
.
edge_type_count
,
self
.
embedding_u_size
,
self
.
dim_a
],
attr
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
default_initializer
=
tn_initializer
,
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
self
.
embedding_size
)),
dtype
=
'float32'
,
dtype
=
'float32'
,
name
=
'trans_w_s1'
)
name
=
'trans_w_s1'
)
# w_r
# w_r
trans_weights_s2
=
fl
.
create_parameter
(
trans_weights_s2
=
fl
.
create_parameter
(
shape
=
[
self
.
edge_type_count
,
self
.
dim_a
,
self
.
att_head
],
shape
=
[
self
.
edge_type_count
,
self
.
dim_a
,
self
.
att_head
],
attr
=
fluid
.
initializer
.
TruncatedNormalInitializer
(
default_initializer
=
tn_initializer
,
loc
=
0.0
,
scale
=
1.0
/
math
.
sqrt
(
self
.
embedding_size
)),
dtype
=
'float32'
,
dtype
=
'float32'
,
name
=
'trans_w_s2'
)
name
=
'trans_w_s2'
)
...
...
pgl/heter_graph.py
浏览文件 @
cccac5f6
...
@@ -14,12 +14,13 @@
...
@@ -14,12 +14,13 @@
"""
"""
This package implement Heterogeneous Graph structure for handling Heterogeneous graph data.
This package implement Heterogeneous Graph structure for handling Heterogeneous graph data.
"""
"""
import
os
import
time
import
time
import
numpy
as
np
import
numpy
as
np
import
pickle
as
pkl
import
pickle
as
pkl
import
time
import
time
import
pgl.graph_kernel
as
graph_kernel
import
pgl.graph_kernel
as
graph_kernel
from
pgl.graph
import
Graph
from
pgl.graph
import
Graph
,
MemmapGraph
__all__
=
[
'HeterGraph'
,
'SubHeterGraph'
]
__all__
=
[
'HeterGraph'
,
'SubHeterGraph'
]
...
@@ -113,6 +114,30 @@ class HeterGraph(object):
...
@@ -113,6 +114,30 @@ class HeterGraph(object):
self
.
_edge_types
=
self
.
edge_types_info
()
self
.
_edge_types
=
self
.
edge_types_info
()
def
dump
(
self
,
path
,
indegree
=
False
,
outdegree
=
False
):
if
indegree
:
for
e_type
,
g
in
self
.
_multi_graph
.
items
():
g
.
indegree
()
if
outdegree
:
for
e_type
,
g
in
self
.
_multi_graph
.
items
():
g
.
outdegree
()
if
not
os
.
path
.
exists
(
path
):
os
.
makedirs
(
path
)
np
.
save
(
os
.
path
.
join
(
path
,
"num_nodes.npy"
),
self
.
_num_nodes
)
np
.
save
(
os
.
path
.
join
(
path
,
"node_types.npy"
),
self
.
_node_types
)
with
open
(
os
.
path
.
join
(
path
,
"edge_types.pkl"
),
'wb'
)
as
f
:
pkl
.
dump
(
self
.
_edge_types
,
f
)
with
open
(
os
.
path
.
join
(
path
,
"nodes_type_dict.pkl"
),
'wb'
)
as
f
:
pkl
.
dump
(
self
.
_nodes_type_dict
,
f
)
for
e_type
,
g
in
self
.
_multi_graph
.
items
():
sub_path
=
os
.
path
.
join
(
path
,
e_type
)
g
.
dump
(
sub_path
)
@
property
@
property
def
edge_types
(
self
):
def
edge_types
(
self
):
"""Return a list of edge types.
"""Return a list of edge types.
...
@@ -399,7 +424,7 @@ class HeterGraph(object):
...
@@ -399,7 +424,7 @@ class HeterGraph(object):
"""
"""
edge_types_info
=
[]
edge_types_info
=
[]
for
key
,
_
in
self
.
_
edges_dict
.
items
():
for
key
,
_
in
self
.
_
multi_graph
.
items
():
edge_types_info
.
append
(
key
)
edge_types_info
.
append
(
key
)
return
edge_types_info
return
edge_types_info
...
@@ -460,3 +485,21 @@ class SubHeterGraph(HeterGraph):
...
@@ -460,3 +485,21 @@ class SubHeterGraph(HeterGraph):
A list of node ids in parent graph.
A list of node ids in parent graph.
"""
"""
return
graph_kernel
.
map_nodes
(
nodes
,
self
.
_to_reindex
)
return
graph_kernel
.
map_nodes
(
nodes
,
self
.
_to_reindex
)
class
MemmapHeterGraph
(
HeterGraph
):
def
__init__
(
self
,
path
):
self
.
_num_nodes
=
np
.
load
(
os
.
path
.
join
(
path
,
'num_nodes.npy'
))
self
.
_node_types
=
np
.
load
(
os
.
path
.
join
(
path
,
'node_types.npy'
),
allow_pickle
=
True
)
with
open
(
os
.
path
.
join
(
path
,
'edge_types.pkl'
),
'rb'
)
as
f
:
self
.
_edge_types
=
pkl
.
load
(
f
)
with
open
(
os
.
path
.
join
(
path
,
"nodes_type_dict.pkl"
),
'rb'
)
as
f
:
self
.
_nodes_type_dict
=
pkl
.
load
(
f
)
self
.
_multi_graph
=
{}
for
e_type
in
self
.
_edge_types
:
sub_path
=
os
.
path
.
join
(
path
,
e_type
)
self
.
_multi_graph
[
e_type
]
=
MemmapGraph
(
sub_path
)
pgl/tests/test_MmapHeterGraph.py
0 → 100644
浏览文件 @
cccac5f6
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""test_hetergraph"""
import
time
import
unittest
import
json
import
os
import
numpy
as
np
from
pgl.sample
import
metapath_randomwalk
from
pgl.graph
import
Graph
from
pgl
import
heter_graph
from
pgl.heter_graph
import
MemmapHeterGraph
def
test_dump
():
np
.
random
.
seed
(
1
)
edges
=
{}
# for test no successor
edges
[
'c2p'
]
=
[(
1
,
4
),
(
0
,
5
),
(
1
,
9
),
(
1
,
8
),
(
2
,
8
),
(
2
,
5
),
(
3
,
6
),
(
3
,
7
),
(
3
,
4
),
(
3
,
8
)]
edges
[
'p2c'
]
=
[(
v
,
u
)
for
u
,
v
in
edges
[
'c2p'
]]
edges
[
'p2a'
]
=
[(
4
,
10
),
(
4
,
11
),
(
4
,
12
),
(
4
,
14
),
(
4
,
13
),
(
6
,
12
),
(
6
,
11
),
(
6
,
14
),
(
7
,
12
),
(
7
,
11
),
(
8
,
14
),
(
9
,
10
)]
edges
[
'a2p'
]
=
[(
v
,
u
)
for
u
,
v
in
edges
[
'p2a'
]]
node_types
=
[
'c'
for
_
in
range
(
4
)]
+
[
'p'
for
_
in
range
(
6
)
]
+
[
'a'
for
_
in
range
(
5
)]
node_types
=
[(
i
,
t
)
for
i
,
t
in
enumerate
(
node_types
)]
graph
=
heter_graph
.
HeterGraph
(
num_nodes
=
len
(
node_types
),
edges
=
edges
,
node_types
=
node_types
)
graph
.
dump
(
"./hetergraph_mmap"
,
outdegree
=
True
)
def
test_load
():
graph
=
MemmapHeterGraph
(
"./hetergraph_mmap"
)
class
MmapHeterGraphTest
(
unittest
.
TestCase
):
@
classmethod
def
setUpClass
(
cls
):
cls
.
graph
=
MemmapHeterGraph
(
"./hetergraph_mmap"
)
def
test_num_nodes_by_type
(
self
):
print
()
n_types
=
{
'c'
:
4
,
'p'
:
6
,
'a'
:
5
}
for
nt
in
n_types
:
num_nodes
=
self
.
graph
.
num_nodes_by_type
(
nt
)
self
.
assertEqual
(
num_nodes
,
n_types
[
nt
])
def
test_node_batch_iter
(
self
):
print
()
batch_size
=
2
ground
=
[[
4
,
5
],
[
6
,
7
],
[
8
,
9
]]
for
idx
,
nodes
in
enumerate
(
self
.
graph
.
node_batch_iter
(
batch_size
=
batch_size
,
shuffle
=
False
,
n_type
=
'p'
)):
self
.
assertEqual
(
len
(
nodes
),
batch_size
)
self
.
assertListEqual
(
list
(
nodes
),
ground
[
idx
])
def
test_sample_successor
(
self
):
print
()
nodes
=
[
4
,
5
,
8
]
md
=
2
succes
=
self
.
graph
.
sample_successor
(
edge_type
=
'p2a'
,
nodes
=
nodes
,
max_degree
=
md
,
return_eids
=
False
)
self
.
assertIsInstance
(
succes
,
list
)
ground
=
[[
10
,
11
,
12
,
14
,
13
],
[],
[
14
]]
for
succ
,
g
in
zip
(
succes
,
ground
):
self
.
assertIsInstance
(
succ
,
np
.
ndarray
)
for
i
in
succ
:
self
.
assertIn
(
i
,
g
)
nodes
=
[
4
]
succes
=
self
.
graph
.
sample_successor
(
edge_type
=
'p2a'
,
nodes
=
nodes
,
max_degree
=
md
,
return_eids
=
False
)
self
.
assertIsInstance
(
succes
,
list
)
ground
=
[[
10
,
11
,
12
,
14
,
13
]]
for
succ
,
g
in
zip
(
succes
,
ground
):
self
.
assertIsInstance
(
succ
,
np
.
ndarray
)
for
i
in
succ
:
self
.
assertIn
(
i
,
g
)
def
test_successor
(
self
):
print
()
nodes
=
[
4
,
5
,
8
]
e_type
=
'p2a'
succes
=
self
.
graph
.
successor
(
edge_type
=
e_type
,
nodes
=
nodes
,
)
self
.
assertIsInstance
(
succes
,
np
.
ndarray
)
ground
=
[[
10
,
11
,
12
,
14
,
13
],
[],
[
14
]]
for
succ
,
g
in
zip
(
succes
,
ground
):
self
.
assertIsInstance
(
succ
,
np
.
ndarray
)
self
.
assertCountEqual
(
succ
,
g
)
nodes
=
[
4
]
e_type
=
'p2a'
succes
=
self
.
graph
.
successor
(
edge_type
=
e_type
,
nodes
=
nodes
,
)
self
.
assertIsInstance
(
succes
,
np
.
ndarray
)
ground
=
[[
10
,
11
,
12
,
14
,
13
]]
for
succ
,
g
in
zip
(
succes
,
ground
):
self
.
assertIsInstance
(
succ
,
np
.
ndarray
)
self
.
assertCountEqual
(
succ
,
g
)
def
test_predecessor
(
self
):
print
()
nodes
=
[
11
,
12
,
13
]
e_type
=
'p2a'
pre
=
self
.
graph
.
predecessor
(
edge_type
=
e_type
,
nodes
=
nodes
,
)
self
.
assertIsInstance
(
pre
,
np
.
ndarray
)
print
(
pre
)
ground
=
[[
4
,
6
,
7
],
[
4
,
6
,
7
],
[
4
]]
for
succ
,
g
in
zip
(
pre
,
ground
):
self
.
assertIsInstance
(
succ
,
np
.
ndarray
)
self
.
assertCountEqual
(
succ
,
g
)
nodes
=
[
11
]
e_type
=
'p2a'
pre
=
self
.
graph
.
predecessor
(
edge_type
=
e_type
,
nodes
=
nodes
,
)
print
(
pre
)
self
.
assertIsInstance
(
pre
,
np
.
ndarray
)
ground
=
[[
4
,
6
,
7
]]
for
p
,
g
in
zip
(
pre
,
ground
):
self
.
assertIsInstance
(
p
,
np
.
ndarray
)
self
.
assertCountEqual
(
p
,
g
)
def
test_sample_nodes
(
self
):
print
()
p_ground
=
[
4
,
5
,
6
,
7
,
8
,
9
]
sample_num
=
10
nodes
=
self
.
graph
.
sample_nodes
(
sample_num
=
sample_num
,
n_type
=
'p'
)
self
.
assertEqual
(
len
(
nodes
),
sample_num
)
for
n
in
nodes
:
self
.
assertIn
(
n
,
p_ground
)
# test n_type == None
ground
=
[
i
for
i
in
range
(
15
)]
nodes
=
self
.
graph
.
sample_nodes
(
sample_num
=
sample_num
,
n_type
=
None
)
self
.
assertEqual
(
len
(
nodes
),
sample_num
)
for
n
in
nodes
:
self
.
assertIn
(
n
,
ground
)
if
__name__
==
"__main__"
:
unittest
.
main
()
# test_dump()
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录