提交 cc0a1a85 编写于 作者: Y Yelrose

Merge branch 'PaddlePaddle-develop'

# Distributed metapath2vec in PGL
# Distributed metapath2vec, metapath2vec++, multi-metapath2vec++ in PGL
[metapath2vec](https://ericdongyx.github.io/papers/KDD17-dong-chawla-swami-metapath2vec.pdf) is a algorithm framework for representation learning in heterogeneous networks which contains multiple types of nodes and links. Given a heterogeneous graph, metapath2vec algorithm first generates meta-path-based random walks and then use skipgram model to train a language model. Based on PGL, we reproduce metapath2vec algorithm in distributed mode.
## Datasets
### Datasets
DBLP: The dataset contains 14376 papers (P), 20 conferences (C), 14475 authors (A), and 8920 terms (T). There are 33791 nodes in this dataset.
You can dowload datasets from [here](https://github.com/librahu/HIN-Datasets-for-Recommendation-and-Network-Embedding)
We use the ```DBLP``` dataset for example. After downloading the dataset, put them, let's say, in ```./data/DBLP/``` .
## Dependencies
### Dependencies
- paddlepaddle>=1.6
- pgl>=1.0.0
## How to run
### How to run
Before training, run the below command to do data preprocessing.
```sh
python data_process.py --data_path ./data/DBLP --output_path ./data/data_processed
......@@ -30,11 +30,21 @@ python multi_class.py --dataset ./data/data_processed/author_label.txt --ckpt_pa
```
### Model Selection
Actually, There are 3 models in this example, they are ```metapath2vec```, ```metapath2vec++``` and ```multi_metapath2vec++```. You can select different models by modifying ```config.yaml```.
## Hyperparameters
In order to run ```metapath2vec++``` model, you can easily rewrite the hyper parameter of **neg_sample_type** to **m2v_plus**, then ```metapath2vec++``` model will be selected.
```multi-metapath2vec++``` means that you are not only use a single metapath, instead, you can use several metapaths at the same time to train the model. For example, you might want to use ```c2p-p2a-a2p-p2c``` and ```p2a-a2p``` simultaneously. Then you can rewrite the below hyper parameters in ```config.yaml```.
- **neg_sample_type**: "m2v_plus"
- **walk_mode**: "multi_m2v"
- **meta_path**: "c2p-p2a-a2p-p2c;p2a-a2p"
- **first_node_type**: "c;p"
### Hyperparameters
All the hyper parameters are saved in ```config.yaml``` file. So before training, you can open the config.yaml to modify the hyper parameters as you like.
Some important hyper parameters in config.yaml:
Some important hyper parameters in ```config.yaml```:
- **edge_path**: the directory of graph data that you want to load
- **lr**: learning rate
- **neg_num**: number of negative samples.
......
......@@ -31,7 +31,7 @@ is_distributed: False
# trainging config
epochs: 10
optimizer: "sgd"
lr: 1.0
lr: 0.1
warm_start_from_dir: null
walkpath_files: "None"
train_files: "None"
......
......@@ -87,9 +87,12 @@ class NodeGenerator(object):
idx = cc % num_n_type
n_type = n_type_list[idx]
try:
nodes = node_generators[n_type].next()
nodes = next(node_generators[n_type])
except StopIteration as e:
log.info("exception when iteration")
log.info("node type of %s iteration finished in one epoch" %
(n_type))
node_generators[n_type] = \
self.graph.node_batch_iter(self.batch_size, n_type=n_type)
break
yield (nodes, idx)
cc += 1
......
# Global Enviroment Settings
#
# trainer config ------
learner_type: "cpu"
optimizer_type: "adam"
lr: 0.00005
batch_size: 2
CPU_NUM: 10
epoch: 20
log_per_step: 1
save_per_step: 100
output_path: "./output"
ckpt_path: "./ernie_base_ckpt"
# data config ------
input_data: "./data.txt"
graph_path: "./workdir"
sample_workers: 1
use_pyreader: true
input_type: "text"
# model config ------
samples: [10]
model_type: "ErnieSageModelV1"
layer_type: "graphsage_sum"
max_seqlen: 40
num_layers: 1
hidden_size: 128
final_fc: true
final_l2_norm: true
loss_type: "hinge"
margin: 0.3
# infer config ------
infer_model: "./output/last"
infer_batch_size: 128
# ernie config ------
encoding: "utf8"
ernie_vocab_file: "./vocab.txt"
ernie_config:
attention_probs_dropout_prob: 0.1
hidden_act: "relu"
hidden_dropout_prob: 0.1
hidden_size: 768
initializer_range: 0.02
max_position_embeddings: 513
num_attention_heads: 12
num_hidden_layers: 12
sent_type_vocab_size: 4
task_type_vocab_size: 3
vocab_size: 18000
use_task_id: false
use_fp16: false
# Global Enviroment Settings
#
# trainer config ------
learner_type: "gpu"
optimizer_type: "adam"
lr: 0.00005
batch_size: 32
CPU_NUM: 10
epoch: 20
log_per_step: 1
save_per_step: 100
output_path: "./output"
ckpt_path: "./ernie_base_ckpt"
# data config ------
input_data: "./data.txt"
graph_path: "./workdir"
sample_workers: 1
use_pyreader: true
input_type: "text"
# model config ------
samples: [10]
model_type: "ErnieSageModelV1"
layer_type: "graphsage_sum"
max_seqlen: 40
num_layers: 1
hidden_size: 128
final_fc: true
final_l2_norm: true
loss_type: "hinge"
margin: 0.3
# infer config ------
infer_model: "./output/last"
infer_batch_size: 128
# ernie config ------
encoding: "utf8"
ernie_vocab_file: "./vocab.txt"
ernie_config:
attention_probs_dropout_prob: 0.1
hidden_act: "relu"
hidden_dropout_prob: 0.1
hidden_size: 768
initializer_range: 0.02
max_position_embeddings: 513
num_attention_heads: 12
num_hidden_layers: 12
sent_type_vocab_size: 4
task_type_vocab_size: 3
vocab_size: 18000
use_task_id: false
use_fp16: false
# Global Enviroment Settings
#
# trainer config ------
learner_type: "cpu"
optimizer_type: "adam"
lr: 0.00005
batch_size: 2
CPU_NUM: 10
epoch: 20
log_per_step: 1
save_per_step: 100
output_path: "./output"
ckpt_path: "./ernie_base_ckpt"
# data config ------
input_data: "./data.txt"
graph_path: "./workdir"
sample_workers: 1
use_pyreader: true
input_type: "text"
# model config ------
samples: [10]
model_type: "ErnieSageModelV2"
max_seqlen: 40
num_layers: 1
hidden_size: 128
final_fc: true
final_l2_norm: true
loss_type: "hinge"
margin: 0.3
# infer config ------
infer_model: "./output/last"
infer_batch_size: 128
# ernie config ------
encoding: "utf8"
ernie_vocab_file: "./vocab.txt"
ernie_config:
attention_probs_dropout_prob: 0.1
hidden_act: "relu"
hidden_dropout_prob: 0.1
hidden_size: 768
initializer_range: 0.02
max_position_embeddings: 513
num_attention_heads: 12
num_hidden_layers: 12
sent_type_vocab_size: 4
task_type_vocab_size: 3
vocab_size: 18000
use_task_id: false
use_fp16: false
# Global Enviroment Settings
#
# trainer config ------
learner_type: "gpu"
optimizer_type: "adam"
lr: 0.00005
batch_size: 32
CPU_NUM: 10
epoch: 20
log_per_step: 1
save_per_step: 100
output_path: "./output"
ckpt_path: "./ernie_base_ckpt"
# data config ------
input_data: "./data.txt"
graph_path: "./workdir"
sample_workers: 1
use_pyreader: true
input_type: "text"
# model config ------
samples: [10]
model_type: "ErnieSageModelV2"
max_seqlen: 40
num_layers: 1
hidden_size: 128
final_fc: true
final_l2_norm: true
loss_type: "hinge"
margin: 0.3
# infer config ------
infer_model: "./output/last"
infer_batch_size: 128
# ernie config ------
encoding: "utf8"
ernie_vocab_file: "./vocab.txt"
ernie_config:
attention_probs_dropout_prob: 0.1
hidden_act: "relu"
hidden_dropout_prob: 0.1
hidden_size: 768
initializer_range: 0.02
max_position_embeddings: 513
num_attention_heads: 12
num_hidden_layers: 12
sent_type_vocab_size: 4
task_type_vocab_size: 3
vocab_size: 18000
use_task_id: false
use_fp16: false
# Global Enviroment Settings
#
# trainer config ------
learner_type: "cpu"
optimizer_type: "adam"
lr: 0.00005
batch_size: 2
CPU_NUM: 10
epoch: 20
log_per_step: 1
save_per_step: 100
output_path: "./output"
ckpt_path: "./ernie_base_ckpt"
# data config ------
input_data: "./data.txt"
graph_path: "./workdir"
sample_workers: 1
use_pyreader: true
input_type: "text"
# model config ------
samples: [10]
model_type: "ErnieSageModelV3"
max_seqlen: 40
num_layers: 1
hidden_size: 128
final_fc: true
final_l2_norm: true
loss_type: "hinge"
margin: 0.3
# infer config ------
infer_model: "./output/last"
infer_batch_size: 128
# ernie config ------
encoding: "utf8"
ernie_vocab_file: "./vocab.txt"
ernie_config:
attention_probs_dropout_prob: 0.1
hidden_act: "relu"
hidden_dropout_prob: 0.1
hidden_size: 768
initializer_range: 0.02
max_position_embeddings: 513
num_attention_heads: 12
num_hidden_layers: 12
sent_type_vocab_size: 4
task_type_vocab_size: 3
vocab_size: 18000
use_task_id: false
use_fp16: false
# Global Enviroment Settings
#
# trainer config ------
learner_type: "gpu"
optimizer_type: "adam"
lr: 0.00005
batch_size: 32
CPU_NUM: 10
epoch: 20
log_per_step: 1
save_per_step: 100
output_path: "./output"
ckpt_path: "./ernie_base_ckpt"
# data config ------
input_data: "./data.txt"
graph_path: "./workdir"
sample_workers: 1
use_pyreader: true
input_type: "text"
# model config ------
samples: [10]
model_type: "ErnieSageModelV3"
max_seqlen: 40
num_layers: 1
hidden_size: 128
final_fc: true
final_l2_norm: true
loss_type: "hinge"
margin: 0.3
# infer config ------
infer_model: "./output/last"
infer_batch_size: 128
# ernie config ------
encoding: "utf8"
ernie_vocab_file: "./vocab.txt"
ernie_config:
attention_probs_dropout_prob: 0.1
hidden_act: "relu"
hidden_dropout_prob: 0.1
hidden_size: 768
initializer_range: 0.02
max_position_embeddings: 513
num_attention_heads: 12
num_hidden_layers: 12
sent_type_vocab_size: 4
task_type_vocab_size: 3
vocab_size: 18000
use_task_id: false
use_fp16: false
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base DataLoader
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import os
import sys
import six
from io import open
from collections import namedtuple
import numpy as np
import tqdm
import paddle
from pgl.utils import mp_reader
import collections
import time
from pgl.utils.logger import log
import traceback
if six.PY3:
import io
sys.stdout = io.TextIOWrapper(sys.stdout.buffer, encoding='utf-8')
sys.stderr = io.TextIOWrapper(sys.stderr.buffer, encoding='utf-8')
def batch_iter(data, perm, batch_size, fid, num_workers):
"""node_batch_iter
"""
size = len(data)
start = 0
cc = 0
while start < size:
index = perm[start:start + batch_size]
start += batch_size
cc += 1
if cc % num_workers != fid:
continue
yield data[index]
def scan_batch_iter(data, batch_size, fid, num_workers):
"""node_batch_iter
"""
batch = []
cc = 0
for line_example in data.scan():
cc += 1
if cc % num_workers != fid:
continue
batch.append(line_example)
if len(batch) == batch_size:
yield batch
batch = []
if len(batch) > 0:
yield batch
class BaseDataGenerator(object):
"""Base Data Geneartor"""
def __init__(self, buf_size, batch_size, num_workers, shuffle=True):
self.num_workers = num_workers
self.batch_size = batch_size
self.line_examples = []
self.buf_size = buf_size
self.shuffle = shuffle
def batch_fn(self, batch_examples):
""" batch_fn batch producer"""
raise NotImplementedError("No defined Batch Fn")
def batch_iter(self, fid, perm):
""" batch iterator"""
if self.shuffle:
for batch in batch_iter(self, perm, self.batch_size, fid, self.num_workers):
yield batch
else:
for batch in scan_batch_iter(self, self.batch_size, fid, self.num_workers):
yield batch
def __len__(self):
return len(self.line_examples)
def __getitem__(self, idx):
if isinstance(idx, collections.Iterable):
return [self[bidx] for bidx in idx]
else:
return self.line_examples[idx]
def generator(self):
"""batch dict generator"""
def worker(filter_id, perm):
""" multiprocess worker"""
def func_run():
""" func_run """
pid = os.getpid()
np.random.seed(pid + int(time.time()))
for batch_examples in self.batch_iter(filter_id, perm):
try:
batch_dict = self.batch_fn(batch_examples)
except Exception as e:
traceback.print_exc()
log.info(traceback.format_exc())
log.info(str(e))
continue
if batch_dict is None:
continue
yield batch_dict
return func_run
# consume a seed
np.random.rand()
if self.shuffle:
perm = np.arange(0, len(self))
np.random.shuffle(perm)
else:
perm = None
if self.num_workers == 1:
r = paddle.reader.buffered(worker(0, perm), self.buf_size)
else:
worker_pool = [worker(wid, perm) for wid in range(self.num_workers)]
worker = mp_reader.multiprocess_reader(
worker_pool, use_pipe=True, queue_size=1000)
r = paddle.reader.buffered(worker, self.buf_size)
for batch in r():
yield batch
def scan(self):
for line_example in self.line_examples:
yield line_example
"""Graph Dataset
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import os
import pgl
import sys
import numpy as np
from pgl.utils.logger import log
from dataset.base_dataset import BaseDataGenerator
from pgl.sample import alias_sample
from pgl.sample import pinsage_sample
from pgl.sample import graphsage_sample
from pgl.sample import edge_hash
class GraphGenerator(BaseDataGenerator):
def __init__(self, graph_wrappers, data, batch_size, samples,
num_workers, feed_name_list, use_pyreader,
phase, graph_data_path, shuffle=True, buf_size=1000):
super(GraphGenerator, self).__init__(
buf_size=buf_size,
num_workers=num_workers,
batch_size=batch_size, shuffle=shuffle)
# For iteration
self.line_examples = data
self.graph_wrappers = graph_wrappers
self.samples = samples
self.feed_name_list = feed_name_list
self.use_pyreader = use_pyreader
self.phase = phase
self.load_graph(graph_data_path)
self.num_layers = len(graph_wrappers)
def load_graph(self, graph_data_path):
self.graph = pgl.graph.MemmapGraph(graph_data_path)
self.alias = np.load(os.path.join(graph_data_path, "alias.npy"), mmap_mode="r")
self.events = np.load(os.path.join(graph_data_path, "events.npy"), mmap_mode="r")
self.term_ids = np.load(os.path.join(graph_data_path, "term_ids.npy"), mmap_mode="r")
def batch_fn(self, batch_ex):
# batch_ex = [
# (src, dst, neg),
# (src, dst, neg),
# (src, dst, neg),
# ]
#
batch_src = []
batch_dst = []
batch_neg = []
for batch in batch_ex:
batch_src.append(batch[0])
batch_dst.append(batch[1])
if len(batch) == 3: # default neg samples
batch_neg.append(batch[2])
if len(batch_src) != self.batch_size:
if self.phase == "train":
return None #Skip
if len(batch_neg) > 0:
batch_neg = np.unique(np.concatenate(batch_neg))
batch_src = np.array(batch_src, dtype="int64")
batch_dst = np.array(batch_dst, dtype="int64")
sampled_batch_neg = alias_sample(batch_dst.shape, self.alias, self.events)
if len(batch_neg) > 0:
batch_neg = np.concatenate([batch_neg, sampled_batch_neg], 0)
else:
batch_neg = sampled_batch_neg
if self.phase == "train":
ignore_edges = set()
else:
ignore_edges = set()
nodes = np.unique(np.concatenate([batch_src, batch_dst, batch_neg], 0))
subgraphs = graphsage_sample(self.graph, nodes, self.samples, ignore_edges=ignore_edges)
feed_dict = {}
for i in range(self.num_layers):
feed_dict.update(self.graph_wrappers[i].to_feed(subgraphs[i]))
# only reindex from first subgraph
sub_src_idx = subgraphs[0].reindex_from_parrent_nodes(batch_src)
sub_dst_idx = subgraphs[0].reindex_from_parrent_nodes(batch_dst)
sub_neg_idx = subgraphs[0].reindex_from_parrent_nodes(batch_neg)
feed_dict["user_index"] = np.array(sub_src_idx, dtype="int64")
feed_dict["item_index"] = np.array(sub_dst_idx, dtype="int64")
#feed_dict["neg_item_index"] = np.array(sub_neg_idx, dtype="int64")
feed_dict["term_ids"] = self.term_ids[subgraphs[0].node_feat["index"]]
return feed_dict
def __call__(self):
return self.generator()
def generator(self):
try:
for feed_dict in super(GraphGenerator, self).generator():
if self.use_pyreader:
yield [feed_dict[name] for name in self.feed_name_list]
else:
yield feed_dict
except Exception as e:
log.exception(e)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import argparse
import pickle
import time
import glob
import os
import io
import traceback
import pickle as pkl
role = os.getenv("TRAINING_ROLE", "TRAINER")
import numpy as np
import yaml
from easydict import EasyDict as edict
import pgl
from pgl.utils.logger import log
from pgl.utils import paddle_helper
import paddle
import paddle.fluid as F
from models.model_factory import Model
from dataset.graph_reader import GraphGenerator
class PredictData(object):
def __init__(self, num_nodes):
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
train_usr = np.arange(trainer_id, num_nodes, trainer_count)
#self.data = (train_usr, train_usr)
self.data = train_usr
def __getitem__(self, index):
return [self.data[index], self.data[index]]
def tostr(data_array):
return " ".join(["%.5lf" % d for d in data_array])
def run_predict(py_reader,
exe,
program,
model_dict,
log_per_step=1,
args=None):
if args.input_type == "text":
id2str = np.load(os.path.join(args.graph_path, "id2str.npy"), mmap_mode="r")
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
if not os.path.exists(args.output_path):
os.mkdir(args.output_path)
fout = io.open("%s/part-%s" % (args.output_path, trainer_id), "w", encoding="utf8")
batch = 0
for batch_feed_dict in py_reader():
batch += 1
batch_usr_feat, batch_ad_feat, batch_src_real_index = exe.run(
program,
feed=batch_feed_dict,
fetch_list=model_dict.outputs)
if batch % log_per_step == 0:
log.info("Predict %s finished" % batch)
for ufs, _, sri in zip(batch_usr_feat, batch_ad_feat, batch_src_real_index):
if args.input_type == "text":
sri = id2str[int(sri)]
line = "{}\t{}\n".format(sri, tostr(ufs))
fout.write(line)
fout.close()
def _warmstart(exe, program, path='params'):
def _existed_persitables(var):
#if not isinstance(var, fluid.framework.Parameter):
# return False
if not F.io.is_persistable(var):
return False
param_path = os.path.join(path, var.name)
log.info("Loading parameter: {} persistable: {} exists: {}".format(
param_path,
F.io.is_persistable(var),
os.path.exists(param_path),
))
return os.path.exists(param_path)
F.io.load_vars(
exe,
path,
main_program=program,
predicate=_existed_persitables
)
def main(config):
model = Model.factory(config)
if config.learner_type == "cpu":
place = F.CPUPlace()
elif config.learner_type == "gpu":
gpu_id = int(os.getenv("FLAGS_selected_gpus", "0"))
place = F.CUDAPlace(gpu_id)
else:
raise ValueError
exe = F.Executor(place)
val_program = F.default_main_program().clone(for_test=True)
exe.run(F.default_startup_program())
_warmstart(exe, F.default_startup_program(), path=config.infer_model)
num_threads = int(os.getenv("CPU_NUM", 1))
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", 0))
exec_strategy = F.ExecutionStrategy()
exec_strategy.num_threads = num_threads
build_strategy = F.BuildStrategy()
build_strategy.enable_inplace = True
build_strategy.memory_optimize = True
build_strategy.remove_unnecessary_lock = False
build_strategy.memory_optimize = False
if num_threads > 1:
build_strategy.reduce_strategy = F.BuildStrategy.ReduceStrategy.Reduce
val_compiled_prog = F.compiler.CompiledProgram(
val_program).with_data_parallel(
build_strategy=build_strategy,
exec_strategy=exec_strategy)
num_nodes = int(np.load(os.path.join(config.graph_path, "num_nodes.npy")))
predict_data = PredictData(num_nodes)
predict_iter = GraphGenerator(
graph_wrappers=model.graph_wrappers,
batch_size=config.infer_batch_size,
data=predict_data,
samples=config.samples,
num_workers=config.sample_workers,
feed_name_list=[var.name for var in model.feed_list],
use_pyreader=config.use_pyreader,
phase="predict",
graph_data_path=config.graph_path,
shuffle=False)
if config.learner_type == "cpu":
model.data_loader.decorate_batch_generator(
predict_iter, places=F.cpu_places())
elif config.learner_type == "gpu":
gpu_id = int(os.getenv("FLAGS_selected_gpus", "0"))
place = F.CUDAPlace(gpu_id)
model.data_loader.decorate_batch_generator(
predict_iter, places=place)
else:
raise ValueError
run_predict(model.data_loader,
program=val_compiled_prog,
exe=exe,
model_dict=model,
args=config)
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='main')
parser.add_argument("--conf", type=str, default="./config.yaml")
args = parser.parse_args()
config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
print(config)
main(config)
unset http_proxy https_proxy
set -x
mode=${1:-local}
config=${2:-"./config.yaml"}
function parse_yaml {
local prefix=$2
local s='[[:space:]]*' w='[a-zA-Z0-9_]*' fs=$(echo @|tr @ '\034')
sed -ne "s|^\($s\):|\1|" \
-e "s|^\($s\)\($w\)$s:$s[\"']\(.*\)[\"']$s\$|\1$fs\2$fs\3|p" \
-e "s|^\($s\)\($w\)$s:$s\(.*\)$s\$|\1$fs\2$fs\3|p" $1 |
awk -F$fs '{
indent = length($1)/2;
vname[indent] = $2;
for (i in vname) {if (i > indent) {delete vname[i]}}
if (length($3) > 0) {
vn=""; for (i=0; i<indent; i++) {vn=(vn)(vname[i])("_")}
printf("%s%s%s=\"%s\"\n", "'$prefix'",vn, $2, $3);
}
}'
}
eval $(parse_yaml $config)
export CPU_NUM=$CPU_NUM
export FLAGS_rpc_deadline=3000000
export FLAGS_rpc_retry_times=1000
if [[ $async_mode == "True" ]];then
echo "async_mode is True"
else
export FLAGS_communicator_send_queue_size=1
export FLAGS_communicator_min_send_grad_num_before_recv=0
export FLAGS_communicator_max_merge_var_num=1 # important!
export FLAGS_communicator_merge_sparse_grad=0
fi
export FLAGS_communicator_recv_wait_times=5000000
mkdir -p output
python ./train.py --conf $config
if [[ $TRAINING_ROLE == "TRAINER" ]];then
python ./infer.py --conf $config
fi
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import os
role = os.getenv("TRAINING_ROLE", "TRAINER")
import numpy as np
from pgl.utils.logger import log
import paddle.fluid as F
import paddle.fluid.layers as L
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import StrategyFactory
from paddle.fluid.incubate.fleet.collective import DistributedStrategy
from paddle.fluid.transpiler.distribute_transpiler import DistributeTranspilerConfig
from paddle.fluid.incubate.fleet.collective import fleet as cfleet
from paddle.fluid.incubate.fleet.parameter_server.distribute_transpiler import fleet as tfleet
import paddle.fluid.incubate.fleet.base.role_maker as role_maker
from tensorboardX import SummaryWriter
class Learner(object):
@classmethod
def factory(cls, name):
if name == "cpu":
return TranspilerLearner()
elif name == "gpu":
return CollectiveLearner()
else:
raise ValueError
def build(self, model, data_gen, config):
raise NotImplementedError
def warmstart(self, program, path='./checkpoints'):
def _existed_persitables(var):
#if not isinstance(var, fluid.framework.Parameter):
# return False
if not F.io.is_persistable(var):
return False
param_path = os.path.join(path, var.name)
log.info("Loading parameter: {} persistable: {} exists: {}".format(
param_path,
F.io.is_persistable(var),
os.path.exists(param_path),
))
return os.path.exists(param_path)
F.io.load_vars(
self.exe,
path,
main_program=program,
predicate=_existed_persitables
)
def start(self):
batch = 0
start = time.time()
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
if trainer_id == 0:
writer = SummaryWriter(os.path.join(self.config.output_path, "train_history"))
for epoch_idx in range(self.config.epoch):
for idx, batch_feed_dict in enumerate(self.model.data_loader()):
try:
cpu_time = time.time()
batch += 1
batch_loss = self.exe.run(
self.program,
feed=batch_feed_dict,
fetch_list=[self.model.loss])
end = time.time()
if trainer_id == 0:
writer.add_scalar("loss", np.mean(batch_loss), batch)
if batch % self.config.log_per_step == 0:
log.info(
"Epoch %s Batch %s %s-Loss %s \t Speed(per batch) %.5lf/%.5lf sec"
% (epoch_idx, batch, "train", np.mean(batch_loss), (end - start) /batch, (end - cpu_time)))
writer.flush()
if batch % self.config.save_per_step == 0:
self.fleet.save_persistables(self.exe, os.path.join(self.config.output_path, str(batch)))
except Exception as e:
log.info("Pyreader train error")
log.exception(e)
log.info("epcoh %s done." % epoch_idx)
def stop(self):
self.fleet.save_persistables(self.exe, os.path.join(self.config.output_path, "last"))
class TranspilerLearner(Learner):
def __init__(self):
training_role = os.getenv("TRAINING_ROLE", "TRAINER")
paddle_role = role_maker.Role.WORKER
place = F.CPUPlace()
if training_role == "PSERVER":
paddle_role = role_maker.Role.SERVER
# set the fleet runtime environment according to configure
port = os.getenv("PADDLE_PORT", "6174")
pserver_ips = os.getenv("PADDLE_PSERVERS") # ip,ip...
eplist = []
for ip in pserver_ips.split(","):
eplist.append(':'.join([ip, port]))
pserver_endpoints = eplist # ip:port,ip:port...
worker_num = int(os.getenv("PADDLE_TRAINERS_NUM", "0"))
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
role = role_maker.UserDefinedRoleMaker(
current_id=trainer_id,
role=paddle_role,
worker_num=worker_num,
server_endpoints=pserver_endpoints)
tfleet.init(role)
tfleet.save_on_pserver = True
def build(self, model, data_gen, config):
self.optimize(model.loss, config.optimizer_type, config.lr)
self.init_and_run_ps_worker(config.ckpt_path)
self.program = self.complie_program(model.loss)
self.fleet = tfleet
model.data_loader.decorate_batch_generator(
data_gen, places=F.cpu_places())
self.config = config
self.model = model
def optimize(self, loss, optimizer_type, lr):
strategy = DistributeTranspilerConfig()
strategy.sync_mode = False
log.info('learning rate:%f' % lr)
if optimizer_type == "sgd":
optimizer = F.optimizer.SGD(learning_rate=lr)
elif optimizer_type == "adam":
# Don't slice tensor ensure convergence
optimizer = F.optimizer.Adam(learning_rate=lr, lazy_mode=True)
else:
raise ValueError("Unknown Optimizer %s" % optimizer_type)
#create the DistributeTranspiler configure
optimizer = tfleet.distributed_optimizer(optimizer, strategy)
optimizer.minimize(loss)
def init_and_run_ps_worker(self, ckpt_path):
# init and run server or worker
self.exe = F.Executor(F.CPUPlace())
if tfleet.is_server():
tfleet.init_server()
self.warmstart(tfleet.startup_program, path=ckpt_path)
tfleet.run_server()
exit()
if tfleet.is_worker():
log.info("start init worker done")
tfleet.init_worker()
self.exe.run(tfleet.startup_program)
def complie_program(self, loss):
num_threads = int(os.getenv("CPU_NUM", 1))
exec_strategy = F.ExecutionStrategy()
exec_strategy.num_threads = num_threads
exec_strategy.use_thread_barrier = False
build_strategy = F.BuildStrategy()
build_strategy.enable_inplace = True
build_strategy.memory_optimize = True
build_strategy.remove_unnecessary_lock = False
build_strategy.memory_optimize = False
build_strategy.async_mode = False
if num_threads > 1:
build_strategy.reduce_strategy = F.BuildStrategy.ReduceStrategy.Reduce
log.info("start build compile program...")
compiled_prog = F.compiler.CompiledProgram(tfleet.main_program
).with_data_parallel(
loss_name=loss.name,
build_strategy=build_strategy,
exec_strategy=exec_strategy)
return compiled_prog
class CollectiveLearner(Learner):
def __init__(self):
role = role_maker.PaddleCloudRoleMaker(is_collective=True)
cfleet.init(role)
def optimize(self, loss, optimizer_type, lr):
optimizer = F.optimizer.Adam(learning_rate=lr)
dist_strategy = DistributedStrategy()
optimizer = cfleet.distributed_optimizer(optimizer, strategy=dist_strategy)
_, param_grads = optimizer.minimize(loss, F.default_startup_program())
def build(self, model, data_gen, config):
self.optimize(model.loss, config.optimizer_type, config.lr)
self.program = cfleet.main_program
gpu_id = int(os.getenv("FLAGS_selected_gpus", "0"))
place = F.CUDAPlace(gpu_id)
self.exe = F.Executor(place)
self.exe.run(F.default_startup_program())
self.warmstart(F.default_startup_program(), config.ckpt_path)
self.fleet = cfleet
model.data_loader.decorate_batch_generator(
data_gen, places=place)
self.config = config
self.model = model
#!/bin/bash
set -x
config=${1:-"./config.yaml"}
unset http_proxy https_proxy
function parse_yaml {
local prefix=$2
local s='[[:space:]]*' w='[a-zA-Z0-9_]*' fs=$(echo @|tr @ '\034')
sed -ne "s|^\($s\):|\1|" \
-e "s|^\($s\)\($w\)$s:$s[\"']\(.*\)[\"']$s\$|\1$fs\2$fs\3|p" \
-e "s|^\($s\)\($w\)$s:$s\(.*\)$s\$|\1$fs\2$fs\3|p" $1 |
awk -F$fs '{
indent = length($1)/2;
vname[indent] = $2;
for (i in vname) {if (i > indent) {delete vname[i]}}
if (length($3) > 0) {
vn=""; for (i=0; i<indent; i++) {vn=(vn)(vname[i])("_")}
printf("%s%s%s=\"%s\"\n", "'$prefix'",vn, $2, $3);
}
}'
}
transpiler_local_train(){
export PADDLE_TRAINERS_NUM=1
export PADDLE_PSERVERS_NUM=1
export PADDLE_PORT=6206
export PADDLE_PSERVERS="127.0.0.1"
export BASE="./local_dir"
echo `which python`
if [ -d ${BASE} ]; then
rm -rf ${BASE}
fi
mkdir ${BASE}
rm job_id
for((i=0;i<${PADDLE_PSERVERS_NUM};i++))
do
echo "start ps server: ${i}"
TRAINING_ROLE="PSERVER" PADDLE_TRAINER_ID=${i} sh job.sh local $config \
&> $BASE/pserver.$i.log &
echo $! >> job_id
done
sleep 3s
for((j=0;j<${PADDLE_TRAINERS_NUM};j++))
do
echo "start ps work: ${j}"
TRAINING_ROLE="TRAINER" PADDLE_TRAINER_ID=${j} sh job.sh local $config \
echo $! >> job_id
done
}
collective_local_train(){
export PATH=./python27-gcc482-gpu/bin/:$PATH
echo `which python`
python -m paddle.distributed.launch train.py --conf $config
python -m paddle.distributed.launch infer.py --conf $config
}
eval $(parse_yaml $config)
unalias python
python3 ./preprocessing/dump_graph.py -i $input_data -o $graph_path --encoding $encoding \
-l $max_seqlen --vocab_file $ernie_vocab_file
if [[ $learner_type == "cpu" ]];then
transpiler_local_train
fi
if [[ $learner_type == "gpu" ]];then
collective_local_train
fi
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import time
import glob
import os
import numpy as np
import pgl
import paddle.fluid as F
import paddle.fluid.layers as L
from models import message_passing
def get_layer(layer_type, gw, feature, hidden_size, act, initializer, learning_rate, name, is_test=False):
return getattr(message_passing, layer_type)(gw, feature, hidden_size, act, initializer, learning_rate, name)
class BaseGraphWrapperBuilder(object):
def __init__(self, config):
self.config = config
self.node_feature_info = []
self.edge_feature_info = []
def __call__(self):
place = F.CPUPlace()
graph_wrappers = []
for i in range(self.config.num_layers):
# all graph have same node_feat_info
graph_wrappers.append(
pgl.graph_wrapper.GraphWrapper(
"layer_%s" % i, place, node_feat=self.node_feature_info, edge_feat=self.edge_feature_info))
return graph_wrappers
class GraphsageGraphWrapperBuilder(BaseGraphWrapperBuilder):
def __init__(self, config):
super(GraphsageGraphWrapperBuilder, self).__init__(config)
self.node_feature_info.append(('index', [None], np.dtype('int64')))
class BaseGNNModel(object):
def __init__(self, config):
self.config = config
self.graph_wrapper_builder = self.gen_graph_wrapper_builder(config)
self.net_fn = self.gen_net_fn(config)
self.feed_list_builder = self.gen_feed_list_builder(config)
self.data_loader_builder = self.gen_data_loader_builder(config)
self.loss_fn = self.gen_loss_fn(config)
self.build()
def gen_graph_wrapper_builder(self, config):
return GraphsageGraphWrapperBuilder(config)
def gen_net_fn(self, config):
return BaseNet(config)
def gen_feed_list_builder(self, config):
return BaseFeedListBuilder(config)
def gen_data_loader_builder(self, config):
return BaseDataLoaderBuilder(config)
def gen_loss_fn(self, config):
return BaseLoss(config)
def build(self):
self.graph_wrappers = self.graph_wrapper_builder()
self.inputs, self.outputs = self.net_fn(self.graph_wrappers)
self.feed_list = self.feed_list_builder(self.inputs, self.graph_wrappers)
self.data_loader = self.data_loader_builder(self.feed_list)
self.loss = self.loss_fn(self.outputs)
class BaseFeedListBuilder(object):
def __init__(self, config):
self.config = config
def __call__(self, inputs, graph_wrappers):
feed_list = []
for i in range(len(graph_wrappers)):
feed_list.extend(graph_wrappers[i].holder_list)
feed_list.extend(inputs)
return feed_list
class BaseDataLoaderBuilder(object):
def __init__(self, config):
self.config = config
def __call__(self, feed_list):
data_loader = F.io.PyReader(
feed_list=feed_list, capacity=20, use_double_buffer=True, iterable=True)
return data_loader
class BaseNet(object):
def __init__(self, config):
self.config = config
def take_final_feature(self, feature, index, name):
"""take final feature"""
feat = L.gather(feature, index, overwrite=False)
if self.config.final_fc:
feat = L.fc(feat,
self.config.hidden_size,
param_attr=F.ParamAttr(name=name + '_w'),
bias_attr=F.ParamAttr(name=name + '_b'))
if self.config.final_l2_norm:
feat = L.l2_normalize(feat, axis=1)
return feat
def build_inputs(self):
user_index = L.data(
"user_index", shape=[None], dtype="int64", append_batch_size=False)
item_index = L.data(
"item_index", shape=[None], dtype="int64", append_batch_size=False)
return [user_index, item_index]
def build_embedding(self, graph_wrappers, inputs=None):
num_embed = int(np.load(os.path.join(self.config.graph_path, "num_nodes.npy")))
is_sparse = self.config.trainer_type == "Transpiler"
embed = L.embedding(
input=L.reshape(graph_wrappers[0].node_feat['index'], [-1, 1]),
size=[num_embed, self.config.hidden_size],
is_sparse=is_sparse,
param_attr=F.ParamAttr(name="node_embedding", initializer=F.initializer.Uniform(
low=-1. / self.config.hidden_size,
high=1. / self.config.hidden_size)))
return embed
def gnn_layers(self, graph_wrappers, feature):
features = [feature]
initializer = None
fc_lr = self.config.lr / 0.001
for i in range(self.config.num_layers):
if i == self.config.num_layers - 1:
act = None
else:
act = "leaky_relu"
feature = get_layer(
self.config.layer_type,
graph_wrappers[i],
feature,
self.config.hidden_size,
act,
initializer,
learning_rate=fc_lr,
name="%s_%s" % (self.config.layer_type, i))
features.append(feature)
return features
def __call__(self, graph_wrappers):
inputs = self.build_inputs()
feature = self.build_embedding(graph_wrappers, inputs)
features = self.gnn_layers(graph_wrappers, feature)
outputs = [self.take_final_feature(features[-1], i, "final_fc") for i in inputs]
src_real_index = L.gather(graph_wrappers[0].node_feat['index'], inputs[0])
outputs.append(src_real_index)
return inputs, outputs
class BaseLoss(object):
def __init__(self, config):
self.config = config
def __call__(self, outputs):
user_feat, item_feat = outputs[0], outputs[1]
loss_type = self.config.loss_type
# Calc Loss
if self.config.loss_type == "hinge":
pos = L.reduce_sum(user_feat * item_feat, -1, keep_dim=True) # [B, 1]
neg = L.matmul(user_feat, item_feat, transpose_y=True) # [B, B]
loss = L.reduce_mean(L.relu(neg - pos + self.config.margin))
elif self.config.loss_type == "softmax":
pass
# TODO
# pos = L.reduce_sum(user_feat * item_feat, -1, keep_dim=True) # [B, 1]
# neg = L.matmul(user_feat, neg_feat, transpose_y=True) # [B, B]
# logits = L.concat([pos, neg], -1) # [B, 1+B]
# labels = L.fill_constant_batch_size_like(logits, [-1, 1], "int64", 0)
# loss = L.reduce_mean(L.softmax_with_cross_entropy(logits, labels))
else:
raise ValueError
return loss
"""Ernie
"""
from models.base import BaseNet, BaseGNNModel
class Ernie(BaseNet):
def build_inputs(self):
inputs = super(Ernie, self).build_inputs()
term_ids = L.data(
"term_ids", shape=[None, self.config.max_seqlen], dtype="int64", append_batch_size=False)
return inputs + [term_ids]
def build_embedding(self, graph_wrappers, term_ids):
term_ids = L.unsqueeze(term_ids, [-1])
ernie_config = self.config.ernie_config
ernie = ErnieModel(
src_ids=term_ids,
sentence_ids=L.zeros_like(term_ids),
task_ids=None,
config=ernie_config,
use_fp16=False,
name="student_")
feature = ernie.get_pooled_output()
return feature
def __call__(self, graph_wrappers):
inputs = self.build_inputs()
feature = self.build_embedding(graph_wrappers, inputs[-1])
features = [feature]
outputs = [self.take_final_feature(features[-1], i, "final_fc") for i in inputs[:-1]]
src_real_index = L.gather(graph_wrappers[0].node_feat['index'], inputs[0])
outputs.append(src_real_index)
return inputs, outputs
class ErnieModel(BaseGNNModel):
def gen_net_fn(self, config):
return Ernie(config)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Ernie model."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
import json
import six
import logging
import paddle.fluid as fluid
import paddle.fluid.layers as L
from io import open
from models.ernie_model.transformer_encoder import encoder, pre_process_layer
from models.ernie_model.transformer_encoder import graph_encoder
log = logging.getLogger(__name__)
class ErnieConfig(object):
def __init__(self, config_path):
self._config_dict = self._parse(config_path)
def _parse(self, config_path):
try:
with open(config_path, 'r', encoding='utf8') as json_file:
config_dict = json.load(json_file)
except Exception:
raise IOError("Error in parsing Ernie model config file '%s'" %
config_path)
else:
return config_dict
def __getitem__(self, key):
return self._config_dict.get(key, None)
def print_config(self):
for arg, value in sorted(six.iteritems(self._config_dict)):
log.info('%s: %s' % (arg, value))
log.info('------------------------------------------------')
class ErnieModel(object):
def __init__(self,
src_ids,
sentence_ids,
task_ids=None,
config=None,
weight_sharing=True,
use_fp16=False,
name=""):
self._set_config(config, name, weight_sharing)
input_mask = self._build_input_mask(src_ids)
position_ids = self._build_position_ids(src_ids)
self._build_model(src_ids, position_ids, sentence_ids, task_ids,
input_mask)
self._debug_summary(input_mask)
def _debug_summary(self, input_mask):
#histogram
seqlen_before_pad = L.cast(
L.reduce_sum(
input_mask, dim=1), dtype='float32')
seqlen_after_pad = L.reduce_sum(
L.cast(
L.zeros_like(input_mask), dtype='float32') + 1.0, dim=1)
pad_num = seqlen_after_pad - seqlen_before_pad
pad_rate = pad_num / seqlen_after_pad
def _build_position_ids(self, src_ids):
d_shape = L.shape(src_ids)
d_seqlen = d_shape[1]
d_batch = d_shape[0]
position_ids = L.reshape(
L.range(
0, d_seqlen, 1, dtype='int32'), [1, d_seqlen, 1],
inplace=True)
position_ids = L.expand(position_ids, [d_batch, 1, 1])
position_ids = L.cast(position_ids, 'int64')
position_ids.stop_gradient = True
return position_ids
def _build_input_mask(self, src_ids):
zero = L.fill_constant([1], dtype='int64', value=0)
input_mask = L.logical_not(L.equal(src_ids,
zero)) # assume pad id == 0
input_mask = L.cast(input_mask, 'float')
input_mask.stop_gradient = True
return input_mask
def _set_config(self, config, name, weight_sharing):
self._emb_size = config['hidden_size']
self._n_layer = config['num_hidden_layers']
self._n_head = config['num_attention_heads']
self._voc_size = config['vocab_size']
self._max_position_seq_len = config['max_position_embeddings']
if config.get('sent_type_vocab_size'):
self._sent_types = config['sent_type_vocab_size']
else:
self._sent_types = config['type_vocab_size']
self._use_task_id = config['use_task_id']
if self._use_task_id:
self._task_types = config['task_type_vocab_size']
self._hidden_act = config['hidden_act']
self._postprocess_cmd = config.get('postprocess_cmd', 'dan')
self._preprocess_cmd = config.get('preprocess_cmd', '')
self._prepostprocess_dropout = config['hidden_dropout_prob']
self._attention_dropout = config['attention_probs_dropout_prob']
self._weight_sharing = weight_sharing
self.name = name
self._word_emb_name = self.name + "word_embedding"
self._pos_emb_name = self.name + "pos_embedding"
self._sent_emb_name = self.name + "sent_embedding"
self._task_emb_name = self.name + "task_embedding"
self._dtype = "float16" if config['use_fp16'] else "float32"
self._emb_dtype = "float32"
# Initialize all weigths by truncated normal initializer, and all biases
# will be initialized by constant zero by default.
self._param_initializer = fluid.initializer.TruncatedNormal(
scale=config['initializer_range'])
def _build_model(self, src_ids, position_ids, sentence_ids, task_ids,
input_mask):
emb_out = self._build_embedding(src_ids, position_ids, sentence_ids,
task_ids)
self.input_mask = input_mask
self._enc_out, self.all_hidden, self.all_attn, self.all_ffn = encoder(
enc_input=emb_out,
input_mask=input_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd=self._preprocess_cmd,
postprocess_cmd=self._postprocess_cmd,
param_initializer=self._param_initializer,
name=self.name + 'encoder')
if self._dtype == "float16":
self._enc_out = fluid.layers.cast(
x=self._enc_out, dtype=self._emb_dtype)
def _build_embedding(self, src_ids, position_ids, sentence_ids, task_ids):
# padding id in vocabulary must be set to 0
emb_out = fluid.layers.embedding(
input=src_ids,
size=[self._voc_size, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=self._word_emb_name, initializer=self._param_initializer),
is_sparse=False)
position_emb_out = fluid.layers.embedding(
input=position_ids,
size=[self._max_position_seq_len, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=self._pos_emb_name, initializer=self._param_initializer))
sent_emb_out = fluid.layers.embedding(
sentence_ids,
size=[self._sent_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=self._sent_emb_name, initializer=self._param_initializer))
self.all_emb = [emb_out, position_emb_out, sent_emb_out]
emb_out = emb_out + position_emb_out
emb_out = emb_out + sent_emb_out
if self._use_task_id:
task_emb_out = fluid.layers.embedding(
task_ids,
size=[self._task_types, self._emb_size],
dtype=self._emb_dtype,
param_attr=fluid.ParamAttr(
name=self._task_emb_name,
initializer=self._param_initializer))
emb_out = emb_out + task_emb_out
emb_out = pre_process_layer(
emb_out,
'nd',
self._prepostprocess_dropout,
name=self.name + 'pre_encoder')
if self._dtype == "float16":
emb_out = fluid.layers.cast(x=emb_out, dtype=self._dtype)
return emb_out
def get_sequence_output(self):
return self._enc_out
def get_pooled_output(self):
"""Get the first feature of each sequence for classification"""
next_sent_feat = self._enc_out[:, 0, :]
#next_sent_feat = fluid.layers.slice(input=self._enc_out, axes=[1], starts=[0], ends=[1])
next_sent_feat = fluid.layers.fc(
input=next_sent_feat,
size=self._emb_size,
act="tanh",
param_attr=fluid.ParamAttr(
name=self.name + "pooled_fc.w_0",
initializer=self._param_initializer),
bias_attr=self.name + "pooled_fc.b_0")
return next_sent_feat
def get_lm_output(self, mask_label, mask_pos):
"""Get the loss & accuracy for pretraining"""
mask_pos = fluid.layers.cast(x=mask_pos, dtype='int32')
# extract the first token feature in each sentence
self.next_sent_feat = self.get_pooled_output()
reshaped_emb_out = fluid.layers.reshape(
x=self._enc_out, shape=[-1, self._emb_size])
# extract masked tokens' feature
mask_feat = fluid.layers.gather(input=reshaped_emb_out, index=mask_pos)
# transform: fc
mask_trans_feat = fluid.layers.fc(
input=mask_feat,
size=self._emb_size,
act=self._hidden_act,
param_attr=fluid.ParamAttr(
name=self.name + 'mask_lm_trans_fc.w_0',
initializer=self._param_initializer),
bias_attr=fluid.ParamAttr(name=self.name + 'mask_lm_trans_fc.b_0'))
# transform: layer norm
mask_trans_feat = fluid.layers.layer_norm(
mask_trans_feat,
begin_norm_axis=len(mask_trans_feat.shape) - 1,
param_attr=fluid.ParamAttr(
name=self.name + 'mask_lm_trans_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(
name=self.name + 'mask_lm_trans_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
# transform: layer norm
#mask_trans_feat = pre_process_layer(
# mask_trans_feat, 'n', name=self.name + 'mask_lm_trans')
mask_lm_out_bias_attr = fluid.ParamAttr(
name=self.name + "mask_lm_out_fc.b_0",
initializer=fluid.initializer.Constant(value=0.0))
if self._weight_sharing:
fc_out = fluid.layers.matmul(
x=mask_trans_feat,
y=fluid.default_main_program().global_block().var(
self._word_emb_name),
transpose_y=True)
fc_out += fluid.layers.create_parameter(
shape=[self._voc_size],
dtype=self._emb_dtype,
attr=mask_lm_out_bias_attr,
is_bias=True)
else:
fc_out = fluid.layers.fc(input=mask_trans_feat,
size=self._voc_size,
param_attr=fluid.ParamAttr(
name=self.name + "mask_lm_out_fc.w_0",
initializer=self._param_initializer),
bias_attr=mask_lm_out_bias_attr)
mask_lm_loss = fluid.layers.softmax_with_cross_entropy(
logits=fc_out, label=mask_label)
return mask_lm_loss
def get_task_output(self, task, task_labels):
task_fc_out = fluid.layers.fc(
input=self.next_sent_feat,
size=task["num_labels"],
param_attr=fluid.ParamAttr(
name=self.name + task["task_name"] + "_fc.w_0",
initializer=self._param_initializer),
bias_attr=self.name + task["task_name"] + "_fc.b_0")
task_loss, task_softmax = fluid.layers.softmax_with_cross_entropy(
logits=task_fc_out, label=task_labels, return_softmax=True)
task_acc = fluid.layers.accuracy(input=task_softmax, label=task_labels)
return task_loss, task_acc
class ErnieGraphModel(ErnieModel):
def __init__(self,
src_ids,
task_ids=None,
config=None,
weight_sharing=True,
use_fp16=False,
slot_seqlen=40,
name=""):
self.slot_seqlen = slot_seqlen
self._set_config(config, name, weight_sharing)
input_mask = self._build_input_mask(src_ids)
position_ids = self._build_position_ids(src_ids)
sentence_ids = self._build_sentence_ids(src_ids)
self._build_model(src_ids, position_ids, sentence_ids, task_ids,
input_mask)
self._debug_summary(input_mask)
def _build_position_ids(self, src_ids):
src_shape = L.shape(src_ids)
src_seqlen = src_shape[1]
src_batch = src_shape[0]
slot_seqlen = self.slot_seqlen
num_b = (src_seqlen / slot_seqlen) - 1
a_position_ids = L.reshape(
L.range(
0, slot_seqlen, 1, dtype='int32'), [1, slot_seqlen, 1],
inplace=True) # [1, slot_seqlen, 1]
a_position_ids = L.expand(a_position_ids, [src_batch, 1, 1]) # [B, slot_seqlen * num_b, 1]
zero = L.fill_constant([1], dtype='int64', value=0)
input_mask = L.cast(L.equal(src_ids[:, :slot_seqlen], zero), "int32") # assume pad id == 0 [B, slot_seqlen, 1]
a_pad_len = L.reduce_sum(input_mask, 1) # [B, 1, 1]
b_position_ids = L.reshape(
L.range(
slot_seqlen, 2*slot_seqlen, 1, dtype='int32'), [1, slot_seqlen, 1],
inplace=True) # [1, slot_seqlen, 1]
b_position_ids = L.expand(b_position_ids, [src_batch, num_b, 1]) # [B, slot_seqlen * num_b, 1]
b_position_ids = b_position_ids - a_pad_len # [B, slot_seqlen * num_b, 1]
position_ids = L.concat([a_position_ids, b_position_ids], 1)
position_ids = L.cast(position_ids, 'int64')
position_ids.stop_gradient = True
return position_ids
def _build_sentence_ids(self, src_ids):
src_shape = L.shape(src_ids)
src_seqlen = src_shape[1]
src_batch = src_shape[0]
slot_seqlen = self.slot_seqlen
zeros = L.zeros([src_batch, slot_seqlen, 1], "int64")
ones = L.ones([src_batch, src_seqlen-slot_seqlen, 1], "int64")
sentence_ids = L.concat([zeros, ones], 1)
sentence_ids.stop_gradient = True
return sentence_ids
def _build_model(self, src_ids, position_ids, sentence_ids, task_ids,
input_mask):
emb_out = self._build_embedding(src_ids, position_ids, sentence_ids,
task_ids)
self.input_mask = input_mask
self._enc_out, self.all_hidden, self.all_attn, self.all_ffn = graph_encoder(
enc_input=emb_out,
input_mask=input_mask,
n_layer=self._n_layer,
n_head=self._n_head,
d_key=self._emb_size // self._n_head,
d_value=self._emb_size // self._n_head,
d_model=self._emb_size,
d_inner_hid=self._emb_size * 4,
prepostprocess_dropout=self._prepostprocess_dropout,
attention_dropout=self._attention_dropout,
relu_dropout=0,
hidden_act=self._hidden_act,
preprocess_cmd=self._preprocess_cmd,
postprocess_cmd=self._postprocess_cmd,
param_initializer=self._param_initializer,
slot_seqlen=self.slot_seqlen,
name=self.name + 'encoder')
if self._dtype == "float16":
self._enc_out = fluid.layers.cast(
x=self._enc_out, dtype=self._emb_dtype)
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from functools import partial
import numpy as np
from contextlib import contextmanager
import paddle.fluid as fluid
import paddle.fluid.layers as L
import paddle.fluid.layers as layers
#import propeller.paddle as propeller
#from propeller import log
#determin this at the begining
to_3d = lambda a: a # will change later
to_2d = lambda a: a
def multi_head_attention(queries,
keys,
values,
attn_bias,
d_key,
d_value,
d_model,
n_head=1,
dropout_rate=0.,
cache=None,
param_initializer=None,
name='multi_head_att'):
"""
Multi-Head Attention. Note that attn_bias is added to the logit before
computing softmax activiation to mask certain selected positions so that
they will not considered in attention weights.
"""
keys = queries if keys is None else keys
values = keys if values is None else values
def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
"""
Add linear projection to queries, keys, and values.
"""
q = layers.fc(input=queries,
size=d_key * n_head,
num_flatten_dims=len(queries.shape) - 1,
param_attr=fluid.ParamAttr(
name=name + '_query_fc.w_0',
initializer=param_initializer),
bias_attr=name + '_query_fc.b_0')
k = layers.fc(input=keys,
size=d_key * n_head,
num_flatten_dims=len(keys.shape) - 1,
param_attr=fluid.ParamAttr(
name=name + '_key_fc.w_0',
initializer=param_initializer),
bias_attr=name + '_key_fc.b_0')
v = layers.fc(input=values,
size=d_value * n_head,
num_flatten_dims=len(values.shape) - 1,
param_attr=fluid.ParamAttr(
name=name + '_value_fc.w_0',
initializer=param_initializer),
bias_attr=name + '_value_fc.b_0')
return q, k, v
def __split_heads(x, n_head):
"""
Reshape the last dimension of inpunt tensor x so that it becomes two
dimensions and then transpose. Specifically, input a tensor with shape
[bs, max_sequence_length, n_head * hidden_dim] then output a tensor
with shape [bs, n_head, max_sequence_length, hidden_dim].
"""
hidden_size = x.shape[-1]
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
reshaped = layers.reshape(
x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)
# permuate the dimensions into:
# [batch_size, n_head, max_sequence_len, hidden_size_per_head]
return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])
def __combine_heads(x):
"""
Transpose and then reshape the last two dimensions of inpunt tensor x
so that it becomes one dimension, which is reverse to __split_heads.
"""
if len(x.shape) == 3: return x
if len(x.shape) != 4:
raise ValueError("Input(x) should be a 4-D Tensor.")
trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
# The value 0 in shape attr means copying the corresponding dimension
# size of the input as the output dimension size.
#trans_x.desc.set_shape((-1, 1, n_head, d_value))
return layers.reshape(x=trans_x, shape=[0, 0, d_model], inplace=True)
def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
"""
Scaled Dot-Product Attention
"""
scaled_q = layers.scale(x=q, scale=d_key**-0.5)
product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
if attn_bias:
product += attn_bias
weights = layers.softmax(product)
if dropout_rate:
weights = layers.dropout(
weights,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.matmul(weights, v)
#return out, product
return out, weights
q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
q = to_3d(q)
k = to_3d(k)
v = to_3d(v)
if cache is not None: # use cache and concat time steps
# Since the inplace reshape in __split_heads changes the shape of k and
# v, which is the cache input for next time step, reshape the cache
# input from the previous time step first.
k = cache["k"] = layers.concat(
[layers.reshape(
cache["k"], shape=[0, 0, d_model]), k], axis=1)
v = cache["v"] = layers.concat(
[layers.reshape(
cache["v"], shape=[0, 0, d_model]), v], axis=1)
q = __split_heads(q, n_head)
k = __split_heads(k, n_head)
v = __split_heads(v, n_head)
ctx_multiheads, ctx_multiheads_attn = scaled_dot_product_attention(
q, k, v, attn_bias, d_key, dropout_rate)
out = __combine_heads(ctx_multiheads)
out = to_2d(out)
# Project back to the model size.
proj_out = layers.fc(input=out,
size=d_model,
num_flatten_dims=len(out.shape) - 1,
param_attr=fluid.ParamAttr(
name=name + '_output_fc.w_0',
initializer=param_initializer),
bias_attr=name + '_output_fc.b_0')
return proj_out, ctx_multiheads_attn
def positionwise_feed_forward(x,
d_inner_hid,
d_hid,
dropout_rate,
hidden_act,
param_initializer=None,
name='ffn'):
"""
Position-wise Feed-Forward Networks.
This module consists of two linear transformations with a ReLU activation
in between, which is applied to each position separately and identically.
"""
hidden = layers.fc(input=x,
size=d_inner_hid,
num_flatten_dims=len(x.shape) - 1,
act=hidden_act,
param_attr=fluid.ParamAttr(
name=name + '_fc_0.w_0',
initializer=param_initializer),
bias_attr=name + '_fc_0.b_0')
if dropout_rate:
hidden = layers.dropout(
hidden,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
out = layers.fc(input=hidden,
size=d_hid,
num_flatten_dims=len(hidden.shape) - 1,
param_attr=fluid.ParamAttr(
name=name + '_fc_1.w_0',
initializer=param_initializer),
bias_attr=name + '_fc_1.b_0')
return out
def pre_post_process_layer(prev_out,
out,
process_cmd,
dropout_rate=0.,
name=''):
"""
Add residual connection, layer normalization and droput to the out tensor
optionally according to the value of process_cmd.
This will be used before or after multi-head attention and position-wise
feed-forward networks.
"""
for cmd in process_cmd:
if cmd == "a": # add residual connection
out = out + prev_out if prev_out else out
elif cmd == "n": # add layer normalization
out_dtype = out.dtype
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float32")
out = layers.layer_norm(
out,
begin_norm_axis=len(out.shape) - 1,
param_attr=fluid.ParamAttr(
name=name + '_layer_norm_scale',
initializer=fluid.initializer.Constant(1.)),
bias_attr=fluid.ParamAttr(
name=name + '_layer_norm_bias',
initializer=fluid.initializer.Constant(0.)))
if out_dtype == fluid.core.VarDesc.VarType.FP16:
out = layers.cast(x=out, dtype="float16")
elif cmd == "d": # add dropout
if dropout_rate:
out = layers.dropout(
out,
dropout_prob=dropout_rate,
dropout_implementation="upscale_in_train",
is_test=False)
return out
pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer
def encoder_layer(enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""The encoder layers that can be stacked to form a deep encoder.
This module consits of a multi-head (self) attention followed by
position-wise feed-forward networks and both the two components companied
with the post_process_layer to add residual connection, layer normalization
and droput.
"""
#L.Print(L.reduce_mean(enc_input), message='1')
attn_output, ctx_multiheads_attn = multi_head_attention(
pre_process_layer(
enc_input,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_att'),
None,
None,
attn_bias,
d_key,
d_value,
d_model,
n_head,
attention_dropout,
param_initializer=param_initializer,
name=name + '_multi_head_att')
#L.Print(L.reduce_mean(attn_output), message='1')
attn_output = post_process_layer(
enc_input,
attn_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_att')
#L.Print(L.reduce_mean(attn_output), message='2')
ffd_output = positionwise_feed_forward(
pre_process_layer(
attn_output,
preprocess_cmd,
prepostprocess_dropout,
name=name + '_pre_ffn'),
d_inner_hid,
d_model,
relu_dropout,
hidden_act,
param_initializer=param_initializer,
name=name + '_ffn')
#L.Print(L.reduce_mean(ffd_output), message='3')
ret = post_process_layer(
attn_output,
ffd_output,
postprocess_cmd,
prepostprocess_dropout,
name=name + '_post_ffn')
#L.Print(L.reduce_mean(ret), message='4')
return ret, ctx_multiheads_attn, ffd_output
def build_pad_idx(input_mask):
pad_idx = L.where(L.cast(L.squeeze(input_mask, [2]), 'bool'))
return pad_idx
def build_attn_bias(input_mask, n_head, dtype):
attn_bias = L.matmul(
input_mask, input_mask, transpose_y=True) # [batch, seq, seq]
attn_bias = (1. - attn_bias) * -10000.
attn_bias = L.stack([attn_bias] * n_head, 1) # [batch, n_head, seq, seq]
if attn_bias.dtype != dtype:
attn_bias = L.cast(attn_bias, dtype)
return attn_bias
def build_graph_attn_bias(input_mask, n_head, dtype, slot_seqlen):
input_shape = L.shape(input_mask)
input_batch = input_shape[0]
input_seqlen = input_shape[1]
num_slot = input_seqlen / slot_seqlen
num_b = num_slot - 1
ones = L.ones([num_b], dtype="float32") # [num_b]
diag_ones = L.diag(ones) # [num_b, num_b]
diag_ones = L.unsqueeze(diag_ones, [1, -1]) # [num_b, 1, num_b, 1]
diag_ones = L.expand(diag_ones, [1, slot_seqlen, 1, slot_seqlen]) # [num_b, seqlen, num_b, seqlen]
diag_ones = L.reshape(diag_ones, [1, num_b*slot_seqlen, num_b*slot_seqlen]) # [1, num_b*seqlen, num_b*seqlen]
graph_attn_bias = L.concat([L.ones([1, num_b*slot_seqlen, slot_seqlen], dtype="float32"), diag_ones], 2)
graph_attn_bias = L.concat([L.ones([1, slot_seqlen, num_slot*slot_seqlen], dtype="float32"), graph_attn_bias], 1) # [1, seq, seq]
pad_attn_bias = L.matmul(
input_mask, input_mask, transpose_y=True) # [batch, seq, seq]
attn_bias = graph_attn_bias * pad_attn_bias
attn_bias = (1. - attn_bias) * -10000.
attn_bias = L.stack([attn_bias] * n_head, 1) # [batch, n_head, seq, seq]
if attn_bias.dtype != dtype:
attn_bias = L.cast(attn_bias, dtype)
return attn_bias
def encoder(enc_input,
input_mask,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
#global to_2d, to_3d #, batch, seqlen, dynamic_dim
d_shape = L.shape(input_mask)
pad_idx = build_pad_idx(input_mask)
attn_bias = build_attn_bias(input_mask, n_head, enc_input.dtype)
# d_batch = d_shape[0]
# d_seqlen = d_shape[1]
# pad_idx = L.where(
# L.cast(L.reshape(input_mask, [d_batch, d_seqlen]), 'bool'))
# attn_bias = L.matmul(
# input_mask, input_mask, transpose_y=True) # [batch, seq, seq]
# attn_bias = (1. - attn_bias) * -10000.
# attn_bias = L.stack([attn_bias] * n_head, 1)
# if attn_bias.dtype != enc_input.dtype:
# attn_bias = L.cast(attn_bias, enc_input.dtype)
# def to_2d(t_3d):
# t_2d = L.gather_nd(t_3d, pad_idx)
# return t_2d
# def to_3d(t_2d):
# t_3d = L.scatter_nd(
# pad_idx, t_2d, shape=[d_shape[0], d_shape[1], d_model])
# return t_3d
enc_input = to_2d(enc_input)
all_hidden = []
all_attn = []
all_ffn = []
for i in range(n_layer):
enc_output, ctx_multiheads_attn, ffn_output = encoder_layer(
enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
all_hidden.append(enc_output)
all_attn.append(ctx_multiheads_attn)
all_ffn.append(ffn_output)
enc_input = enc_output
enc_output = pre_process_layer(
enc_output,
preprocess_cmd,
prepostprocess_dropout,
name="post_encoder")
enc_output = to_3d(enc_output)
#enc_output.desc.set_shape((-1, 1, final_dim))
return enc_output, all_hidden, all_attn, all_ffn
def graph_encoder(enc_input,
input_mask,
n_layer,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd="n",
postprocess_cmd="da",
param_initializer=None,
slot_seqlen=40,
name=''):
"""
The encoder is composed of a stack of identical layers returned by calling
encoder_layer.
"""
#global to_2d, to_3d #, batch, seqlen, dynamic_dim
d_shape = L.shape(input_mask)
pad_idx = build_pad_idx(input_mask)
attn_bias = build_graph_attn_bias(input_mask, n_head, enc_input.dtype, slot_seqlen)
#attn_bias = build_attn_bias(input_mask, n_head, enc_input.dtype)
# d_batch = d_shape[0]
# d_seqlen = d_shape[1]
# pad_idx = L.where(
# L.cast(L.reshape(input_mask, [d_batch, d_seqlen]), 'bool'))
# attn_bias = L.matmul(
# input_mask, input_mask, transpose_y=True) # [batch, seq, seq]
# attn_bias = (1. - attn_bias) * -10000.
# attn_bias = L.stack([attn_bias] * n_head, 1)
# if attn_bias.dtype != enc_input.dtype:
# attn_bias = L.cast(attn_bias, enc_input.dtype)
# def to_2d(t_3d):
# t_2d = L.gather_nd(t_3d, pad_idx)
# return t_2d
# def to_3d(t_2d):
# t_3d = L.scatter_nd(
# pad_idx, t_2d, shape=[d_shape[0], d_shape[1], d_model])
# return t_3d
enc_input = to_2d(enc_input)
all_hidden = []
all_attn = []
all_ffn = []
for i in range(n_layer):
enc_output, ctx_multiheads_attn, ffn_output = encoder_layer(
enc_input,
attn_bias,
n_head,
d_key,
d_value,
d_model,
d_inner_hid,
prepostprocess_dropout,
attention_dropout,
relu_dropout,
hidden_act,
preprocess_cmd,
postprocess_cmd,
param_initializer=param_initializer,
name=name + '_layer_' + str(i))
all_hidden.append(enc_output)
all_attn.append(ctx_multiheads_attn)
all_ffn.append(ffn_output)
enc_input = enc_output
enc_output = pre_process_layer(
enc_output,
preprocess_cmd,
prepostprocess_dropout,
name="post_encoder")
enc_output = to_3d(enc_output)
#enc_output.desc.set_shape((-1, 1, final_dim))
return enc_output, all_hidden, all_attn, all_ffn
import pgl
import paddle.fluid as F
import paddle.fluid.layers as L
from models.base import BaseNet, BaseGNNModel
from models.ernie_model.ernie import ErnieModel
from models.ernie_model.ernie import ErnieGraphModel
from models.ernie_model.ernie import ErnieConfig
class ErnieSageV1(BaseNet):
def build_inputs(self):
inputs = super(ErnieSageV1, self).build_inputs()
term_ids = L.data(
"term_ids", shape=[None, self.config.max_seqlen], dtype="int64", append_batch_size=False)
return inputs + [term_ids]
def build_embedding(self, graph_wrappers, term_ids):
term_ids = L.unsqueeze(term_ids, [-1])
ernie_config = self.config.ernie_config
ernie = ErnieModel(
src_ids=term_ids,
sentence_ids=L.zeros_like(term_ids),
task_ids=None,
config=ernie_config,
use_fp16=False,
name="student_")
feature = ernie.get_pooled_output()
return feature
def __call__(self, graph_wrappers):
inputs = self.build_inputs()
feature = self.build_embedding(graph_wrappers, inputs[-1])
features = self.gnn_layers(graph_wrappers, feature)
outputs = [self.take_final_feature(features[-1], i, "final_fc") for i in inputs[:-1]]
src_real_index = L.gather(graph_wrappers[0].node_feat['index'], inputs[0])
outputs.append(src_real_index)
return inputs, outputs
class ErnieSageModelV1(BaseGNNModel):
def gen_net_fn(self, config):
return ErnieSageV1(config)
import pgl
import paddle.fluid as F
import paddle.fluid.layers as L
from models.base import BaseNet, BaseGNNModel
from models.ernie_model.ernie import ErnieModel
from models.ernie_model.ernie import ErnieGraphModel
from models.ernie_model.ernie import ErnieConfig
class ErnieSageV2(BaseNet):
def build_inputs(self):
inputs = super(ErnieSageV2, self).build_inputs()
term_ids = L.data(
"term_ids", shape=[None, self.config.max_seqlen], dtype="int64", append_batch_size=False)
return inputs + [term_ids]
def gnn_layer(self, gw, feature, hidden_size, act, initializer, learning_rate, name):
def ernie_send(src_feat, dst_feat, edge_feat):
"""doc"""
cls = L.fill_constant_batch_size_like(src_feat["term_ids"], [-1, 1, 1], "int64", 1)
src_ids = L.concat([cls, src_feat["term_ids"]], 1)
dst_ids = dst_feat["term_ids"]
sent_ids = L.concat([L.zeros_like(src_ids), L.ones_like(dst_ids)], 1)
term_ids = L.concat([src_ids, dst_ids], 1)
term_ids.stop_gradient = True
sent_ids.stop_gradient = True
ernie = ErnieModel(
term_ids, sent_ids,
config=self.config.ernie_config)
feature = ernie.get_pooled_output()
return feature
def erniesage_v2_aggregator(gw, feature, hidden_size, act, initializer, learning_rate, name):
feature = L.unsqueeze(feature, [-1])
msg = gw.send(ernie_send, nfeat_list=[("term_ids", feature)])
neigh_feature = gw.recv(msg, lambda feat: F.layers.sequence_pool(feat, pool_type="sum"))
term_ids = feature
cls = L.fill_constant_batch_size_like(term_ids, [-1, 1, 1], "int64", 1)
term_ids = L.concat([cls, term_ids], 1)
term_ids.stop_gradient = True
ernie = ErnieModel(
term_ids, L.zeros_like(term_ids),
config=self.config.ernie_config)
self_feature = ernie.get_pooled_output()
self_feature = L.fc(self_feature,
hidden_size,
act=act,
param_attr=F.ParamAttr(name=name + "_l",
learning_rate=learning_rate),
)
neigh_feature = L.fc(neigh_feature,
hidden_size,
act=act,
param_attr=F.ParamAttr(name=name + "_r",
learning_rate=learning_rate),
)
output = L.concat([self_feature, neigh_feature], axis=1)
output = L.l2_normalize(output, axis=1)
return output
return erniesage_v2_aggregator(gw, feature, hidden_size, act, initializer, learning_rate, name)
def gnn_layers(self, graph_wrappers, feature):
features = [feature]
initializer = None
fc_lr = self.config.lr / 0.001
for i in range(self.config.num_layers):
if i == self.config.num_layers - 1:
act = None
else:
act = "leaky_relu"
feature = self.gnn_layer(
graph_wrappers[i],
feature,
self.config.hidden_size,
act,
initializer,
learning_rate=fc_lr,
name="%s_%s" % ("erniesage_v2", i))
features.append(feature)
return features
def __call__(self, graph_wrappers):
inputs = self.build_inputs()
feature = inputs[-1]
features = self.gnn_layers(graph_wrappers, feature)
outputs = [self.take_final_feature(features[-1], i, "final_fc") for i in inputs[:-1]]
src_real_index = L.gather(graph_wrappers[0].node_feat['index'], inputs[0])
outputs.append(src_real_index)
return inputs, outputs
class ErnieSageModelV2(BaseGNNModel):
def gen_net_fn(self, config):
return ErnieSageV2(config)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import pgl
import paddle.fluid as F
import paddle.fluid.layers as L
from models.base import BaseNet, BaseGNNModel
from models.ernie_model.ernie import ErnieModel
from models.ernie_model.ernie import ErnieGraphModel
from models.ernie_model.ernie import ErnieConfig
from models.message_passing import copy_send
class ErnieSageV3(BaseNet):
def __init__(self, config):
super(ErnieSageV3, self).__init__(config)
self.config.layer_type = "ernie_recv_sum"
def build_inputs(self):
inputs = super(ErnieSageV3, self).build_inputs()
term_ids = L.data(
"term_ids", shape=[None, self.config.max_seqlen], dtype="int64", append_batch_size=False)
return inputs + [term_ids]
def gnn_layer(self, gw, feature, hidden_size, act, initializer, learning_rate, name):
def ernie_recv(feat):
"""doc"""
# TODO maxlen 400
#pad_value = L.cast(L.assign(input=np.array([0], dtype=np.int32)), "int64")
pad_value = L.zeros([1], "int64")
out, _ = L.sequence_pad(feat, pad_value=pad_value, maxlen=10)
out = L.reshape(out, [0, 400])
return out
def erniesage_v3_aggregator(gw, feature, hidden_size, act, initializer, learning_rate, name):
msg = gw.send(copy_send, nfeat_list=[("h", feature)])
neigh_feature = gw.recv(msg, ernie_recv)
neigh_feature = L.cast(L.unsqueeze(neigh_feature, [-1]), "int64")
feature = L.unsqueeze(feature, [-1])
cls = L.fill_constant_batch_size_like(feature, [-1, 1, 1], "int64", 1)
term_ids = L.concat([cls, feature[:, :-1], neigh_feature], 1)
term_ids.stop_gradient = True
return term_ids
return erniesage_v3_aggregator(gw, feature, hidden_size, act, initializer, learning_rate, name)
def gnn_layers(self, graph_wrappers, feature):
features = [feature]
initializer = None
fc_lr = self.config.lr / 0.001
for i in range(self.config.num_layers):
if i == self.config.num_layers - 1:
act = None
else:
act = "leaky_relu"
feature = self.gnn_layer(
graph_wrappers[i],
feature,
self.config.hidden_size,
act,
initializer,
learning_rate=fc_lr,
name="%s_%s" % (self.config.layer_type, i))
features.append(feature)
return features
def take_final_feature(self, feature, index, name):
"""take final feature"""
feat = L.gather(feature, index, overwrite=False)
ernie_config = self.config.ernie_config
ernie = ErnieGraphModel(
src_ids=feat,
config=ernie_config,
slot_seqlen=self.config.max_seqlen,
name="student_")
feat = ernie.get_pooled_output()
fc_lr = self.config.lr / 0.001
feat= L.fc(feat,
self.config.hidden_size,
act="relu",
param_attr=F.ParamAttr(name=name + "_l",
learning_rate=fc_lr),
)
feat = L.l2_normalize(feat, axis=1)
if self.config.final_fc:
feat = L.fc(feat,
self.config.hidden_size,
param_attr=F.ParamAttr(name=name + '_w'),
bias_attr=F.ParamAttr(name=name + '_b'))
if self.config.final_l2_norm:
feat = L.l2_normalize(feat, axis=1)
return feat
def __call__(self, graph_wrappers):
inputs = self.build_inputs()
feature = inputs[-1]
features = self.gnn_layers(graph_wrappers, feature)
outputs = [self.take_final_feature(features[-1], i, "final_fc") for i in inputs[:-1]]
src_real_index = L.gather(graph_wrappers[0].node_feat['index'], inputs[0])
outputs.append(src_real_index)
return inputs, outputs
class ErnieSageModelV3(BaseGNNModel):
def gen_net_fn(self, config):
return ErnieSageV3(config)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as L
def copy_send(src_feat, dst_feat, edge_feat):
"""doc"""
return src_feat["h"]
def weighted_copy_send(src_feat, dst_feat, edge_feat):
"""doc"""
return src_feat["h"] * edge_feat["weight"]
def mean_recv(feat):
"""doc"""
return fluid.layers.sequence_pool(feat, pool_type="average")
def sum_recv(feat):
"""doc"""
return fluid.layers.sequence_pool(feat, pool_type="sum")
def max_recv(feat):
"""doc"""
return fluid.layers.sequence_pool(feat, pool_type="max")
def lstm_recv(feat):
"""doc"""
hidden_dim = 128
forward, _ = fluid.layers.dynamic_lstm(
input=feat, size=hidden_dim * 4, use_peepholes=False)
output = fluid.layers.sequence_last_step(forward)
return output
def graphsage_sum(gw, feature, hidden_size, act, initializer, learning_rate, name):
"""doc"""
msg = gw.send(copy_send, nfeat_list=[("h", feature)])
neigh_feature = gw.recv(msg, sum_recv)
self_feature = feature
self_feature = fluid.layers.fc(self_feature,
hidden_size,
act=act,
param_attr=fluid.ParamAttr(name=name + "_l", initializer=initializer,
learning_rate=learning_rate),
)
neigh_feature = fluid.layers.fc(neigh_feature,
hidden_size,
act=act,
param_attr=fluid.ParamAttr(name=name + "_r", initializer=initializer,
learning_rate=learning_rate),
)
output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
output = fluid.layers.l2_normalize(output, axis=1)
return output
def graphsage_mean(gw, feature, hidden_size, act, initializer, learning_rate, name):
"""doc"""
msg = gw.send(copy_send, nfeat_list=[("h", feature)])
neigh_feature = gw.recv(msg, mean_recv)
self_feature = feature
self_feature = fluid.layers.fc(self_feature,
hidden_size,
act=act,
param_attr=fluid.ParamAttr(name=name + "_l", initializer=initializer,
learning_rate=learning_rate),
)
neigh_feature = fluid.layers.fc(neigh_feature,
hidden_size,
act=act,
param_attr=fluid.ParamAttr(name=name + "_r", initializer=initializer,
learning_rate=learning_rate),
)
output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
output = fluid.layers.l2_normalize(output, axis=1)
return output
def pinsage_mean(gw, feature, hidden_size, act, initializer, learning_rate, name):
"""doc"""
msg = gw.send(weighted_copy_send, nfeat_list=[("h", feature)], efeat_list=["weight"])
neigh_feature = gw.recv(msg, mean_recv)
self_feature = feature
self_feature = fluid.layers.fc(self_feature,
hidden_size,
act=act,
param_attr=fluid.ParamAttr(name=name + "_l", initializer=initializer,
learning_rate=learning_rate),
)
neigh_feature = fluid.layers.fc(neigh_feature,
hidden_size,
act=act,
param_attr=fluid.ParamAttr(name=name + "_r", initializer=initializer,
learning_rate=learning_rate),
)
output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
output = fluid.layers.l2_normalize(output, axis=1)
return output
def pinsage_sum(gw, feature, hidden_size, act, initializer, learning_rate, name):
"""doc"""
msg = gw.send(weighted_copy_send, nfeat_list=[("h", feature)], efeat_list=["weight"])
neigh_feature = gw.recv(msg, sum_recv)
self_feature = feature
self_feature = fluid.layers.fc(self_feature,
hidden_size,
act=act,
param_attr=fluid.ParamAttr(name=name + "_l", initializer=initializer,
learning_rate=learning_rate),
)
neigh_feature = fluid.layers.fc(neigh_feature,
hidden_size,
act=act,
param_attr=fluid.ParamAttr(name=name + "_r", initializer=initializer,
learning_rate=learning_rate),
)
output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
output = fluid.layers.l2_normalize(output, axis=1)
return output
from models.base import BaseGNNModel
from models.ernie import ErnieModel
from models.erniesage_v1 import ErnieSageModelV1
from models.erniesage_v2 import ErnieSageModelV2
from models.erniesage_v3 import ErnieSageModelV3
class Model(object):
@classmethod
def factory(cls, config):
name = config.model_type
if name == "BaseGNNModel":
return BaseGNNModel(config)
if name == "ErnieModel":
return ErnieModel(config)
if name == "ErnieSageModelV1":
return ErnieSageModelV1(config)
if name == "ErnieSageModelV2":
return ErnieSageModelV2(config)
if name == "ErnieSageModelV3":
return ErnieSageModelV3(config)
else:
raise ValueError
#!/usr/bin/env python
# -*- coding: utf-8 -*-
########################################################################
#
# Copyright (c) 2020 Baidu.com, Inc. All Rights Reserved
#
# File: dump_graph.py
# Author: suweiyue(suweiyue@baidu.com)
# Date: 2020/03/01 22:17:13
#
########################################################################
"""
Comment.
"""
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
#from __future__ import unicode_literals
import io
import os
import sys
import argparse
import logging
import multiprocessing
from functools import partial
from io import open
import numpy as np
import tqdm
import pgl
from pgl.graph_kernel import alias_sample_build_table
from pgl.utils.logger import log
from tokenization import FullTokenizer
def term2id(string, tokenizer, max_seqlen):
string = string.split("\t")[1]
tokens = tokenizer.tokenize(string)
ids = tokenizer.convert_tokens_to_ids(tokens)
ids = ids[:max_seqlen-1]
ids = ids + [2] # ids + [sep]
ids = ids + [0] * (max_seqlen - len(ids))
return ids
def dump_graph(args):
if not os.path.exists(args.outpath):
os.makedirs(args.outpath)
neg_samples = []
str2id = dict()
term_file = io.open(os.path.join(args.outpath, "terms.txt"), "w", encoding=args.encoding)
terms = []
count = 0
with io.open(args.inpath, encoding=args.encoding) as f:
edges = []
for idx, line in enumerate(f):
if idx % 100000 == 0:
log.info("%s readed %s lines" % (args.inpath, idx))
slots = []
for col_idx, col in enumerate(line.strip("\n").split("\t")):
s = col[:args.max_seqlen]
if s not in str2id:
str2id[s] = count
count += 1
term_file.write(str(col_idx) + "\t" + col + "\n")
slots.append(str2id[s])
src = slots[0]
dst = slots[1]
neg_samples.append(slots[2:])
edges.append((src, dst))
edges.append((dst, src))
term_file.close()
edges = np.array(edges, dtype="int64")
num_nodes = len(str2id)
str2id.clear()
log.info("building graph...")
graph = pgl.graph.Graph(num_nodes=num_nodes, edges=edges)
indegree = graph.indegree()
graph.outdegree()
graph.dump(args.outpath)
# dump alias sample table
sqrt_indegree = np.sqrt(indegree)
distribution = 1. * sqrt_indegree / sqrt_indegree.sum()
alias, events = alias_sample_build_table(distribution)
np.save(os.path.join(args.outpath, "alias.npy"), alias)
np.save(os.path.join(args.outpath, "events.npy"), events)
np.save(os.path.join(args.outpath, "neg_samples.npy"), np.array(neg_samples))
log.info("End Build Graph")
def dump_id2str_map(args):
log.info("Dump id2str map starting...")
id2str = np.array([line.strip("\n") for line in open(os.path.join(args.outpath, "terms.txt"), "r", encoding=args.encoding)])
np.save(os.path.join(args.outpath, "id2str.npy"), id2str)
log.info("Dump id2str map done.")
def dump_node_feat(args):
log.info("Dump node feat starting...")
id2str = np.load(os.path.join(args.outpath, "id2str.npy"), mmap_mode="r")
pool = multiprocessing.Pool()
tokenizer = FullTokenizer(args.vocab_file)
term_ids = pool.map(partial(term2id, tokenizer=tokenizer, max_seqlen=args.max_seqlen), id2str)
np.save(os.path.join(args.outpath, "term_ids.npy"), np.array(term_ids))
log.info("Dump node feat done.")
pool.terminate()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='main')
parser.add_argument("-i", "--inpath", type=str, default=None)
parser.add_argument("-l", "--max_seqlen", type=int, default=30)
parser.add_argument("--vocab_file", type=str, default="./vocab.txt")
parser.add_argument("--encoding", type=str, default="utf8")
parser.add_argument("-o", "--outpath", type=str, default=None)
args = parser.parse_args()
dump_graph(args)
dump_id2str_map(args)
dump_node_feat(args)
# coding=utf-8
# Copyright 2018 The Google AI Language Team Authors.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Tokenization classes."""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
import collections
import unicodedata
import six
import sentencepiece as sp
def convert_to_unicode(text):
"""Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text.decode("utf-8", "ignore")
elif isinstance(text, unicode):
return text
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def printable_text(text):
"""Returns text encoded in a way suitable for print or `tf.logging`."""
# These functions want `str` for both Python2 and Python3, but in one case
# it's a Unicode string and in the other it's a byte string.
if six.PY3:
if isinstance(text, str):
return text
elif isinstance(text, bytes):
return text.decode("utf-8", "ignore")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
elif six.PY2:
if isinstance(text, str):
return text
elif isinstance(text, unicode):
return text.encode("utf-8")
else:
raise ValueError("Unsupported string type: %s" % (type(text)))
else:
raise ValueError("Not running on Python2 or Python 3?")
def load_vocab(vocab_file):
"""Loads a vocabulary file into a dictionary."""
vocab = collections.OrderedDict()
fin = open(vocab_file, 'rb')
for num, line in enumerate(fin):
items = convert_to_unicode(line.strip()).split("\t")
if len(items) > 2:
break
token = items[0]
index = items[1] if len(items) == 2 else num
token = token.strip()
vocab[token] = int(index)
return vocab
def convert_by_vocab(vocab, items):
"""Converts a sequence of [tokens|ids] using the vocab."""
output = []
for item in items:
output.append(vocab[item])
return output
def convert_tokens_to_ids_include_unk(vocab, tokens, unk_token="[UNK]"):
output = []
for token in tokens:
if token in vocab:
output.append(vocab[token])
else:
output.append(vocab[unk_token])
return output
def convert_tokens_to_ids(vocab, tokens):
return convert_by_vocab(vocab, tokens)
def convert_ids_to_tokens(inv_vocab, ids):
return convert_by_vocab(inv_vocab, ids)
def whitespace_tokenize(text):
"""Runs basic whitespace cleaning and splitting on a peice of text."""
text = text.strip()
if not text:
return []
tokens = text.split()
return tokens
class FullTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text):
split_tokens = []
for token in self.basic_tokenizer.tokenize(text):
for sub_token in self.wordpiece_tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class CharTokenizer(object):
"""Runs end-to-end tokenziation."""
def __init__(self, vocab_file, do_lower_case=True):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.tokenizer = WordpieceTokenizer(vocab=self.vocab)
def tokenize(self, text):
split_tokens = []
for token in text.lower().split(" "):
for sub_token in self.tokenizer.tokenize(token):
split_tokens.append(sub_token)
return split_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class BasicTokenizer(object):
"""Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
def __init__(self, do_lower_case=True):
"""Constructs a BasicTokenizer.
Args:
do_lower_case: Whether to lower case the input.
"""
self.do_lower_case = do_lower_case
def tokenize(self, text):
"""Tokenizes a piece of text."""
text = convert_to_unicode(text)
text = self._clean_text(text)
# This was added on November 1st, 2018 for the multilingual and Chinese
# models. This is also applied to the English models now, but it doesn't
# matter since the English models were not trained on any Chinese data
# and generally don't have any Chinese data in them (there are Chinese
# characters in the vocabulary because Wikipedia does have some Chinese
# words in the English Wikipedia.).
text = self._tokenize_chinese_chars(text)
orig_tokens = whitespace_tokenize(text)
split_tokens = []
for token in orig_tokens:
if self.do_lower_case:
token = token.lower()
token = self._run_strip_accents(token)
split_tokens.extend(self._run_split_on_punc(token))
output_tokens = whitespace_tokenize(" ".join(split_tokens))
return output_tokens
def _run_strip_accents(self, text):
"""Strips accents from a piece of text."""
text = unicodedata.normalize("NFD", text)
output = []
for char in text:
cat = unicodedata.category(char)
if cat == "Mn":
continue
output.append(char)
return "".join(output)
def _run_split_on_punc(self, text):
"""Splits punctuation on a piece of text."""
chars = list(text)
i = 0
start_new_word = True
output = []
while i < len(chars):
char = chars[i]
if _is_punctuation(char):
output.append([char])
start_new_word = True
else:
if start_new_word:
output.append([])
start_new_word = False
output[-1].append(char)
i += 1
return ["".join(x) for x in output]
def _tokenize_chinese_chars(self, text):
"""Adds whitespace around any CJK character."""
output = []
for char in text:
cp = ord(char)
if self._is_chinese_char(cp):
output.append(" ")
output.append(char)
output.append(" ")
else:
output.append(char)
return "".join(output)
def _is_chinese_char(self, cp):
"""Checks whether CP is the codepoint of a CJK character."""
# This defines a "chinese character" as anything in the CJK Unicode block:
# https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
#
# Note that the CJK Unicode block is NOT all Japanese and Korean characters,
# despite its name. The modern Korean Hangul alphabet is a different block,
# as is Japanese Hiragana and Katakana. Those alphabets are used to write
# space-separated words, so they are not treated specially and handled
# like the all of the other languages.
if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
(cp >= 0x3400 and cp <= 0x4DBF) or #
(cp >= 0x20000 and cp <= 0x2A6DF) or #
(cp >= 0x2A700 and cp <= 0x2B73F) or #
(cp >= 0x2B740 and cp <= 0x2B81F) or #
(cp >= 0x2B820 and cp <= 0x2CEAF) or
(cp >= 0xF900 and cp <= 0xFAFF) or #
(cp >= 0x2F800 and cp <= 0x2FA1F)): #
return True
return False
def _clean_text(self, text):
"""Performs invalid character removal and whitespace cleanup on text."""
output = []
for char in text:
cp = ord(char)
if cp == 0 or cp == 0xfffd or _is_control(char):
continue
if _is_whitespace(char):
output.append(" ")
else:
output.append(char)
return "".join(output)
class SentencepieceTokenizer(object):
"""Runs SentencePiece tokenziation."""
def __init__(self, vocab_file, do_lower_case=True, unk_token="[UNK]"):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.do_lower_case = do_lower_case
self.tokenizer = sp.SentencePieceProcessor()
self.tokenizer.Load(vocab_file + ".model")
self.sp_unk_token = "<unk>"
self.unk_token = unk_token
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
Returns:
A list of wordpiece tokens.
"""
text = text.lower() if self.do_lower_case else text
text = convert_to_unicode(text.replace("\1", " "))
tokens = self.tokenizer.EncodeAsPieces(text)
output_tokens = []
for token in tokens:
if token == self.sp_unk_token:
token = self.unk_token
if token in self.vocab:
output_tokens.append(token)
else:
output_tokens.append(self.unk_token)
return output_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class WordsegTokenizer(object):
"""Runs Wordseg tokenziation."""
def __init__(self, vocab_file, do_lower_case=True, unk_token="[UNK]",
split_token="\1"):
self.vocab = load_vocab(vocab_file)
self.inv_vocab = {v: k for k, v in self.vocab.items()}
self.tokenizer = sp.SentencePieceProcessor()
self.tokenizer.Load(vocab_file + ".model")
self.do_lower_case = do_lower_case
self.unk_token = unk_token
self.split_token = split_token
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
Returns:
A list of wordpiece tokens.
"""
text = text.lower() if self.do_lower_case else text
text = convert_to_unicode(text)
output_tokens = []
for token in text.split(self.split_token):
if token in self.vocab:
output_tokens.append(token)
else:
sp_tokens = self.tokenizer.EncodeAsPieces(token)
for sp_token in sp_tokens:
if sp_token in self.vocab:
output_tokens.append(sp_token)
return output_tokens
def convert_tokens_to_ids(self, tokens):
return convert_by_vocab(self.vocab, tokens)
def convert_ids_to_tokens(self, ids):
return convert_by_vocab(self.inv_vocab, ids)
class WordpieceTokenizer(object):
"""Runs WordPiece tokenziation."""
def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
self.vocab = vocab
self.unk_token = unk_token
self.max_input_chars_per_word = max_input_chars_per_word
def tokenize(self, text):
"""Tokenizes a piece of text into its word pieces.
This uses a greedy longest-match-first algorithm to perform tokenization
using the given vocabulary.
For example:
input = "unaffable"
output = ["un", "##aff", "##able"]
Args:
text: A single token or whitespace separated tokens. This should have
already been passed through `BasicTokenizer.
Returns:
A list of wordpiece tokens.
"""
text = convert_to_unicode(text)
output_tokens = []
for token in whitespace_tokenize(text):
chars = list(token)
if len(chars) > self.max_input_chars_per_word:
output_tokens.append(self.unk_token)
continue
is_bad = False
start = 0
sub_tokens = []
while start < len(chars):
end = len(chars)
cur_substr = None
while start < end:
substr = "".join(chars[start:end])
if start > 0:
substr = "##" + substr
if substr in self.vocab:
cur_substr = substr
break
end -= 1
if cur_substr is None:
is_bad = True
break
sub_tokens.append(cur_substr)
start = end
if is_bad:
output_tokens.append(self.unk_token)
else:
output_tokens.extend(sub_tokens)
return output_tokens
def _is_whitespace(char):
"""Checks whether `chars` is a whitespace character."""
# \t, \n, and \r are technically contorl characters but we treat them
# as whitespace since they are generally considered as such.
if char == " " or char == "\t" or char == "\n" or char == "\r":
return True
cat = unicodedata.category(char)
if cat == "Zs":
return True
return False
def _is_control(char):
"""Checks whether `chars` is a control character."""
# These are technically control characters but we count them as whitespace
# characters.
if char == "\t" or char == "\n" or char == "\r":
return False
cat = unicodedata.category(char)
if cat.startswith("C"):
return True
return False
def _is_punctuation(char):
"""Checks whether `chars` is a punctuation character."""
cp = ord(char)
# We treat all non-letter/number ASCII as punctuation.
# Characters such as "^", "$", and "`" are not in the Unicode
# Punctuation class but we treat them as punctuation anyways, for
# consistency.
if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
(cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
return True
cat = unicodedata.category(char)
if cat.startswith("P"):
return True
return False
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import os
import argparse
import traceback
import yaml
import numpy as np
from easydict import EasyDict as edict
from pgl.utils.logger import log
from pgl.utils import paddle_helper
from learner import Learner
from models.model_factory import Model
from dataset.graph_reader import GraphGenerator
class TrainData(object):
def __init__(self, graph_path):
trainer_id = int(os.getenv("PADDLE_TRAINER_ID", "0"))
trainer_count = int(os.getenv("PADDLE_TRAINERS_NUM", "1"))
log.info("trainer_id: %s, trainer_count: %s." % (trainer_id, trainer_count))
edges = np.load(os.path.join(graph_path, "edges.npy"), allow_pickle=True)
# edges is bidirectional.
train_usr = edges[trainer_id::trainer_count, 0]
train_ad = edges[trainer_id::trainer_count, 1]
returns = {
"train_data": [train_usr, train_ad]
}
if os.path.exists(os.path.join(graph_path, "neg_samples.npy")):
neg_samples = np.load(os.path.join(graph_path, "neg_samples.npy"), allow_pickle=True)
if neg_samples.size != 0:
train_negs = neg_samples[trainer_id::trainer_count]
returns["train_data"].append(train_negs)
log.info("Load train_data done.")
self.data = returns
def __getitem__(self, index):
return [ data[index] for data in self.data["train_data"]]
def __len__(self):
return len(self.data["train_data"][0])
def main(config):
# Select Model
model = Model.factory(config)
# Build Train Edges
data = TrainData(config.graph_path)
# Build Train Data
train_iter = GraphGenerator(
graph_wrappers=model.graph_wrappers,
batch_size=config.batch_size,
data=data,
samples=config.samples,
num_workers=config.sample_workers,
feed_name_list=[var.name for var in model.feed_list],
use_pyreader=config.use_pyreader,
phase="train",
graph_data_path=config.graph_path,
shuffle=True)
log.info("build graph reader done.")
learner = Learner.factory(config.learner_type)
learner.build(model, train_iter, config)
learner.start()
learner.stop()
if __name__ == "__main__":
parser = argparse.ArgumentParser(description='main')
parser.add_argument("--conf", type=str, default="./config.yaml")
args = parser.parse_args()
config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
print(config)
main(config)
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the dataset for GIN model.
"""
import os
import sys
import numpy as np
from sklearn.model_selection import StratifiedKFold
import pgl
from pgl.utils.logger import log
def fold10_split(dataset, fold_idx=0, seed=0, shuffle=True):
"""10 fold splitter"""
assert 0 <= fold_idx and fold_idx < 10, print(
"fold_idx must be from 0 to 9.")
skf = StratifiedKFold(n_splits=10, shuffle=shuffle, random_state=seed)
labels = []
for i in range(len(dataset)):
g, c = dataset[i]
labels.append(c)
idx_list = []
for idx in skf.split(np.zeros(len(labels)), labels):
idx_list.append(idx)
train_idx, valid_idx = idx_list[fold_idx]
log.info("train_set : test_set == %d : %d" %
(len(train_idx), len(valid_idx)))
return Subset(dataset, train_idx), Subset(dataset, valid_idx)
def random_split(dataset, split_ratio=0.7, seed=0, shuffle=True):
"""random splitter"""
np.random.seed(seed)
indices = list(range(len(dataset)))
np.random.shuffle(indices)
split = int(split_ratio * len(dataset))
train_idx, valid_idx = indices[:split], indices[split:]
log.info("train_set : test_set == %d : %d" %
(len(train_idx), len(valid_idx)))
return Subset(dataset, train_idx), Subset(dataset, valid_idx)
class BaseDataset(object):
"""BaseDataset"""
def __init__(self):
pass
def __getitem__(self, idx):
"""getitem"""
raise NotImplementedError
def __len__(self):
"""len"""
raise NotImplementedError
class Subset(BaseDataset):
"""
Subset of a dataset at specified indices.
"""
def __init__(self, dataset, indices):
self.dataset = dataset
self.indices = indices
def __getitem__(self, idx):
"""getitem"""
return self.dataset[self.indices[idx]]
def __len__(self):
"""len"""
return len(self.indices)
class GINDataset(BaseDataset):
"""Dataset for Graph Isomorphism Network (GIN)
Adapted from https://github.com/weihua916/powerful-gnns/blob/master/dataset.zip.
"""
def __init__(self,
data_path,
dataset_name,
self_loop,
degree_as_nlabel=False):
self.data_path = data_path
self.dataset_name = dataset_name
self.self_loop = self_loop
self.degree_as_nlabel = degree_as_nlabel
self.graph_list = []
self.glabel_list = []
# relabel
self.glabel_dict = {}
self.nlabel_dict = {}
self.elabel_dict = {}
self.ndegree_dict = {}
# global num
self.num_graph = 0 # total graphs number
self.n = 0 # total nodes number
self.m = 0 # total edges number
# global num of classes
self.gclasses = 0
self.nclasses = 0
self.eclasses = 0
self.dim_nfeats = 0
# flags
self.degree_as_nlabel = degree_as_nlabel
self.nattrs_flag = False
self.nlabels_flag = False
self._load_data()
def __len__(self):
"""return the number of graphs"""
return len(self.graph_list)
def __getitem__(self, idx):
"""getitem"""
return self.graph_list[idx], self.glabel_list[idx]
def _load_data(self):
"""Loads dataset
"""
filename = os.path.join(self.data_path, self.dataset_name,
"%s.txt" % self.dataset_name)
log.info("loading data from %s" % filename)
with open(filename, 'r') as reader:
# first line --> N, means total number of graphs
self.num_graph = int(reader.readline().strip())
for i in range(self.num_graph):
if (i + 1) % int(self.num_graph / 10) == 0:
log.info("processing graph %s" % (i + 1))
graph = dict()
# second line --> [num_node, label]
# means [node number of a graph, class label of a graph]
grow = reader.readline().strip().split()
n_nodes, glabel = [int(w) for w in grow]
# relabel graphs
if glabel not in self.glabel_dict:
mapped = len(self.glabel_dict)
self.glabel_dict[glabel] = mapped
graph['num_nodes'] = n_nodes
self.glabel_list.append(self.glabel_dict[glabel])
nlabels = []
node_features = []
num_edges = 0
edges = []
for j in range(graph['num_nodes']):
slots = reader.readline().strip().split()
# handle edges and node feature(if has)
tmp = int(slots[
1]) + 2 # tmp == 2 + num_edges of current node
if tmp == len(slots):
# no node feature
nrow = [int(w) for w in slots]
nfeat = None
elif tmp < len(slots):
nrow = [int(w) for w in slots[:tmp]]
nfeat = [float(w) for w in slots[tmp:]]
node_features.append(nfeat)
else:
raise Exception('edge number is not correct!')
# relabel nodes if is has labels
# if it doesn't have node labels, then every nrow[0] == 0
if not nrow[0] in self.nlabel_dict:
mapped = len(self.nlabel_dict)
self.nlabel_dict[nrow[0]] = mapped
nlabels.append(self.nlabel_dict[nrow[0]])
num_edges += nrow[1]
edges.extend([(j, u) for u in nrow[2:]])
if self.self_loop:
num_edges += 1
edges.append((j, j))
if node_features != []:
node_features = np.stack(node_features)
graph['attr'] = node_features
self.nattrs_flag = True
else:
node_features = None
graph['attr'] = node_features
graph['nlabel'] = np.array(
nlabels, dtype="int64").reshape(-1, 1)
if len(self.nlabel_dict) > 1:
self.nlabels_flag = True
graph['edges'] = edges
assert num_edges == len(edges)
g = pgl.graph.Graph(
num_nodes=graph['num_nodes'],
edges=graph['edges'],
node_feat={
'nlabel': graph['nlabel'],
'attr': graph['attr']
})
self.graph_list.append(g)
# update statistics of graphs
self.n += graph['num_nodes']
self.m += num_edges
# if no attr
if not self.nattrs_flag:
log.info('there are no node features in this dataset!')
label2idx = {}
# generate node attr by node degree
if self.degree_as_nlabel:
log.info('generate node features by node degree...')
nlabel_set = set([])
for g in self.graph_list:
g.node_feat['nlabel'] = g.indegree()
# extracting unique node labels
nlabel_set = nlabel_set.union(set(g.node_feat['nlabel']))
g.node_feat['nlabel'] = g.node_feat['nlabel'].reshape(-1,
1)
nlabel_set = list(nlabel_set)
# in case the labels/degrees are not continuous number
self.ndegree_dict = {
nlabel_set[i]: i
for i in range(len(nlabel_set))
}
label2idx = self.ndegree_dict
# generate node attr by node label
else:
log.info('generate node features by node label...')
label2idx = self.nlabel_dict
for g in self.graph_list:
attr = np.zeros((g.num_nodes, len(label2idx)))
idx = [
label2idx[tag]
for tag in g.node_feat['nlabel'].reshape(-1, )
]
attr[:, idx] = 1
g.node_feat['attr'] = attr.astype("float32")
# after load, get the #classes and #dim
self.gclasses = len(self.glabel_dict)
self.nclasses = len(self.nlabel_dict)
self.eclasses = len(self.elabel_dict)
self.dim_nfeats = len(self.graph_list[0].node_feat['attr'][0])
message = "finished loading data\n"
message += """
num_graph: %d
num_graph_class: %d
total_num_nodes: %d
node Classes: %d
node_features_dim: %d
num_edges: %d
edge_classes: %d
Avg. of #Nodes: %.2f
Avg. of #Edges: %.2f
Graph Relabeled: %s
Node Relabeled: %s
Degree Relabeled(If degree_as_nlabel=True): %s""" % (
self.num_graph,
self.gclasses,
self.n,
self.nclasses,
self.dim_nfeats,
self.m,
self.eclasses,
self.n / self.num_graph,
self.m / self.num_graph,
self.glabel_dict,
self.nlabel_dict,
self.ndegree_dict, )
log.info(message)
if __name__ == "__main__":
gindataset = GINDataset(
"./dataset/", "MUTAG", self_loop=True, degree_as_nlabel=False)
# Graph Isomorphism Network (GIN)
[Graph Isomorphism Network \(GIN\)](https://arxiv.org/pdf/1810.00826.pdf) is a simple graph neural network that expects to achieve the ability as the Weisfeiler-Lehman graph isomorphism test. Based on PGL, we reproduce the GIN model.
### Datasets
The dataset can be downloaded from [here](https://github.com/weihua916/powerful-gnns/blob/master/dataset.zip).
After downloading the data,uncompress them, then a directory named `./dataset/` can be found in current directory. Note that the current directory is the root directory of GIN model.
### Dependencies
- paddlepaddle >= 1.6
- pgl 1.0.2
### How to run
For examples, use GPU to train GIN model on MUTAG dataset.
```
python main.py --use_cuda --dataset_name MUTAG --data_path ./dataset
```
### Hyperparameters
- data\_path: the root path of your dataset
- dataset\_name: the name of the dataset
- fold\_idx: The $fold\_idx^{th}$ fold of dataset splited. Here we use 10 fold cross-validation
- train\_eps: whether the $\epsilon$ parameter is learnable.
### Experiment results (Accuracy)
| |MUTAG | COLLAB | IMDBBINARY | IMDBMULTI |
|--|-------------|----------|------------|-----------------|
|PGL result | 90.8 | 78.6 | 76.8 | 50.8 |
|paper reuslt |90.0 | 80.0 | 75.1 | 52.3 |
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the graph dataloader.
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import os
import sys
import time
import argparse
import numpy as np
import collections
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as fl
import pgl
from pgl.utils import mp_reader
from pgl.utils.logger import log
def batch_iter(data, batch_size, fid, num_workers):
"""node_batch_iter
"""
size = len(data)
perm = np.arange(size)
np.random.shuffle(perm)
start = 0
cc = 0
while start < size:
index = perm[start:start + batch_size]
start += batch_size
cc += 1
if cc % num_workers != fid:
continue
yield data[index]
def scan_batch_iter(data, batch_size, fid, num_workers):
"""scan_batch_iter
"""
batch = []
cc = 0
for line_example in data.scan():
cc += 1
if cc % num_workers != fid:
continue
batch.append(line_example)
if len(batch) == batch_size:
yield batch
batch = []
if len(batch) > 0:
yield batch
class GraphDataloader(object):
"""Graph Dataloader
"""
def __init__(
self,
dataset,
batch_size,
seed=0,
num_workers=1,
buf_size=1000,
shuffle=True, ):
self.shuffle = shuffle
self.seed = seed
self.num_workers = num_workers
self.buf_size = buf_size
self.batch_size = batch_size
self.dataset = dataset
def batch_fn(self, batch_examples):
""" batch_fn batch producer"""
graphs = [b[0] for b in batch_examples]
labels = [b[1] for b in batch_examples]
join_graph = pgl.graph.MultiGraph(graphs)
labels = np.array(labels, dtype="int64").reshape(-1, 1)
return join_graph, labels
# feed_dict = self.graph_wrapper.to_feed(join_graph)
# raise NotImplementedError("No defined Batch Fn")
def batch_iter(self, fid):
"""batch_iter"""
if self.shuffle:
for batch in batch_iter(self, self.batch_size, fid,
self.num_workers):
yield batch
else:
for batch in scan_batch_iter(self, self.batch_size, fid,
self.num_workers):
yield batch
def __len__(self):
"""__len__"""
return len(self.dataset)
def __getitem__(self, idx):
"""__getitem__"""
if isinstance(idx, collections.Iterable):
return [self[bidx] for bidx in idx]
else:
return self.dataset[idx]
def __iter__(self):
"""__iter__"""
def worker(filter_id):
def func_run():
for batch_examples in self.batch_iter(filter_id):
batch_dict = self.batch_fn(batch_examples)
yield batch_dict
return func_run
if self.num_workers == 1:
r = paddle.reader.buffered(worker(0), self.buf_size)
else:
worker_pool = [worker(wid) for wid in range(self.num_workers)]
worker = mp_reader.multiprocess_reader(
worker_pool, use_pipe=True, queue_size=1000)
r = paddle.reader.buffered(worker, self.buf_size)
for batch in r():
yield batch
def scan(self):
"""scan"""
for example in self.dataset:
yield example
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file implement the training process of GIN model.
"""
import os
import sys
import time
import argparse
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as fl
import pgl
from pgl.utils.logger import log
from Dataset import GINDataset, fold10_split, random_split
from dataloader import GraphDataloader
from model import GINModel
def main(args):
"""main function"""
dataset = GINDataset(
args.data_path,
args.dataset_name,
self_loop=not args.train_eps,
degree_as_nlabel=True)
train_dataset, test_dataset = fold10_split(
dataset, fold_idx=args.fold_idx, seed=args.seed)
train_loader = GraphDataloader(train_dataset, batch_size=args.batch_size)
test_loader = GraphDataloader(
test_dataset, batch_size=args.batch_size, shuffle=False)
place = fluid.CUDAPlace(0) if args.use_cuda else fluid.CPUPlace()
train_program = fluid.Program()
startup_program = fluid.Program()
with fluid.program_guard(train_program, startup_program):
gw = pgl.graph_wrapper.GraphWrapper(
"gw", place=place, node_feat=dataset[0][0].node_feat_info())
model = GINModel(args, gw, dataset.gclasses)
model.forward()
infer_program = train_program.clone(for_test=True)
with fluid.program_guard(train_program, startup_program):
epoch_step = int(len(train_dataset) / args.batch_size) + 1
boundaries = [
i
for i in range(50 * epoch_step, args.epochs * epoch_step,
epoch_step * 50)
]
values = [args.lr * 0.5**i for i in range(0, len(boundaries) + 1)]
lr = fl.piecewise_decay(boundaries=boundaries, values=values)
train_op = fluid.optimizer.Adam(lr).minimize(model.loss)
exe = fluid.Executor(place)
exe.run(startup_program)
# train and evaluate
global_step = 0
for epoch in range(1, args.epochs + 1):
for idx, batch_data in enumerate(train_loader):
g, labels = batch_data
feed_dict = gw.to_feed(g)
feed_dict['labels'] = labels
ret_loss, ret_lr, ret_acc = exe.run(
train_program,
feed=feed_dict,
fetch_list=[model.loss, lr, model.acc])
global_step += 1
if global_step % 10 == 0:
message = "epoch %d | step %d | " % (epoch, global_step)
message += "lr %.6f | loss %.6f | acc %.4f" % (
ret_lr, ret_loss, ret_acc)
log.info(message)
# evaluate
result = evaluate(exe, infer_program, model, gw, test_loader)
message = "evaluating result"
for key, value in result.items():
message += " | %s %.6f" % (key, value)
log.info(message)
def evaluate(exe, prog, model, gw, loader):
"""evaluate"""
total_loss = []
total_acc = []
for idx, batch_data in enumerate(loader):
g, labels = batch_data
feed_dict = gw.to_feed(g)
feed_dict['labels'] = labels
ret_loss, ret_acc = exe.run(prog,
feed=feed_dict,
fetch_list=[model.loss, model.acc])
total_loss.append(ret_loss)
total_acc.append(ret_acc)
total_loss = np.mean(total_loss)
total_acc = np.mean(total_acc)
return {"loss": total_loss, "acc": total_acc}
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, default='./dataset')
parser.add_argument('--dataset_name', type=str, default='MUTAG')
parser.add_argument('--batch_size', type=int, default=32)
parser.add_argument('--fold_idx', type=int, default=0)
parser.add_argument('--output_path', type=str, default='./outputs/')
parser.add_argument('--use_cuda', action='store_true')
parser.add_argument('--num_layers', type=int, default=5)
parser.add_argument('--num_mlp_layers', type=int, default=2)
parser.add_argument('--hidden_size', type=int, default=64)
parser.add_argument(
'--pool_type',
type=str,
default="sum",
choices=["sum", "average", "max"])
parser.add_argument('--train_eps', action='store_true')
parser.add_argument('--epochs', type=int, default=350)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--dropout_prob', type=float, default=0.5)
parser.add_argument('--seed', type=int, default=0)
args = parser.parse_args()
log.info(args)
if not os.path.exists(args.output_path):
os.makedirs(args.output_path)
main(args)
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""This file implement the GIN model.
"""
import numpy as np
import paddle.fluid as fluid
import paddle.fluid.layers as fl
import pgl
from pgl.layers.conv import gin
class GINModel(object):
"""GINModel"""
def __init__(self, args, gw, num_class):
self.args = args
self.num_layers = self.args.num_layers
self.hidden_size = self.args.hidden_size
self.train_eps = self.args.train_eps
self.pool_type = self.args.pool_type
self.dropout_prob = self.args.dropout_prob
self.num_class = num_class
self.gw = gw
self.labels = fl.data(name="labels", shape=[None, 1], dtype="int64")
def forward(self):
"""forward"""
features_list = [self.gw.node_feat["attr"]]
for i in range(self.num_layers):
h = gin(self.gw,
features_list[i],
hidden_size=self.hidden_size,
activation="relu",
name="gin_%s" % (i),
init_eps=0.0,
train_eps=self.train_eps)
h = fl.layer_norm(
h,
begin_norm_axis=1,
param_attr=fluid.ParamAttr(
name="norm_scale_%s" % (i),
initializer=fluid.initializer.Constant(1.0)),
bias_attr=fluid.ParamAttr(
name="norm_bias_%s" % (i),
initializer=fluid.initializer.Constant(0.0)), )
h = fl.relu(h)
features_list.append(h)
output = 0
for i, h in enumerate(features_list):
pooled_h = pgl.layers.graph_pooling(self.gw, h, self.pool_type)
drop_h = fl.dropout(
pooled_h,
self.dropout_prob,
dropout_implementation="upscale_in_train")
output += fl.fc(drop_h,
size=self.num_class,
act=None,
param_attr=fluid.ParamAttr(name="final_fc_%s" %
(i)))
# calculate loss
self.loss = fl.softmax_with_cross_entropy(output, self.labels)
self.loss = fl.reduce_mean(self.loss)
self.acc = fl.accuracy(fl.softmax(output), self.labels)
# PGL - Knowledge Graph Embedding
## Introduction
This package is mainly for computing node and relation embedding of knowledge graphs efficiently.
This package reproduce the following knowledge embedding models:
- TransE
- TransR
- RotatE
## Dataset
The dataset WN18 and FB15k are originally published by TransE paper and and be download [here](https://everest.hds.utc.fr/doku.php?id=en:transe)
## Dependencies
If you want to use the PGL-KGE in paddle, please install following packages.
- paddlepaddle>=1.7
- pgl
## Experiment results
FB15k dataset
| Models |Mean Rank| Mrr | Hits@1 | Hits@3 | Hits@10 | MR@filter| Hits10@filter|
|----------|-------|-------|--------|--------|---------|---------|---------|
| TransE| 214 | -- | -- | -- | 0.491 | 118 | 0.668|
| TransR| 202 | -- | -- | -- | 0.502 | 115 | 0.683|
| RotatE| 156| -- | -- | -- | 0.498 | 52 | 0.710|
WN18 dataset
| Models |Mean Rank| Mrr | Hits@1 | Hits@3 | Hits@10 | MR@filter| Hits10@filter|
|----------|-------|-------|--------|--------|---------|---------|---------|
| TransE| 257 | -- | -- | -- | 0.800 | 245 | 0.915|
| TransR| 255 | -- | -- | -- | 0.8012| 243 | 0.9371|
| RotatE| 188 | -- | -- | -- | 0.8325| 176 | 0.9601|
## References
[1]. TransE https://ieeexplore.ieee.org/abstract/document/8047276
[2]. TransR http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523
[3]. RotatE https://arxiv.org/abs/1902.10197
#CUDA_VISIBLE_DEVICES=2 \
#FLAGS_fraction_of_gpu_memory_to_use=0.01 \
#python main.py \
# --use_cuda \
# --model TransE \
# --optimizer adam \
# --batch_size=512 \
# --learning_rate=0.001 \
# --epoch 100 \
# --evaluate_per_iteration 20 \
# --sample_workers 4 \
# --margin 4 \
## #--only_evaluate
#CUDA_VISIBLE_DEVICES=2 \
#FLAGS_fraction_of_gpu_memory_to_use=0.01 \
#python main.py \
# --use_cuda \
# --model RotatE \
# --data_dir ./data/WN18 \
# --optimizer adam \
# --batch_size=512 \
# --learning_rate=0.001 \
# --epoch 100 \
# --evaluate_per_iteration 100 \
# --sample_workers 10 \
# --margin 6 \
# --neg_times 10
CUDA_VISIBLE_DEVICES=2 \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model RotatE \
--data_dir ./data/FB15k \
--optimizer adam \
--batch_size=512 \
--learning_rate=0.001 \
--epoch 100 \
--evaluate_per_iteration 100 \
--sample_workers 10 \
--margin 8 \
--neg_times 10 \
--neg_mode True
# PGL - Knowledge Graph Embedding
This package is mainly for computing node and relation embedding of knowledge graphs efficiently.
This package reproduce the following knowledge embedding models:
- TransE
- TransR
- RotatE
### Dataset
The dataset WN18 and FB15k are originally published by TransE paper and can be download [here](https://everest.hds.utc.fr/doku.php?id=en:transe).
FB15k: [https://drive.google.com/open?id=19I3LqaKjgq-3vOs0us7OgEL06TIs37W8](https://drive.google.com/open?id=19I3LqaKjgq-3vOs0us7OgEL06TIs37W8)
WN18: [https://drive.google.com/open?id=1MXy257ZsjeXQHZScHLeQeVnUTPjltlwD](https://drive.google.com/open?id=1MXy257ZsjeXQHZScHLeQeVnUTPjltlwD)
### Dependencies
If you want to use the PGL-KG in paddle, please install following packages.
- paddlepaddle>=1.7
- pgl
### Hyperparameters
- use\_cuda: use cuda to train.
- model: pgl-kg model names. Now available for `TransE`, `TransR` and `RotatE`.
- data\_dir: the data path of dataset.
- optimizer: optimizer to run the model.
- batch\_size: batch size.
- learning\_rate:learning rate.
- epoch: epochs to run.
- evaluate\_per\_iteration: evaluate after certain epochs.
- sample\_workers: sample workers nums to prepare data.
- margin: hyper-parameter for some model.
For more hyper parameters usages, please refer the `main.py`. We also provide `run.sh` script to reproduce performance results (please download dataset in `./data` and specify the data\_dir paramter).
### How to run
For examples, use GPU to train TransR model on WN18 dataset.
(please download WN18 dataset to `./data` floder)
```
python main.py --use_cuda --model TransR --data_dir ./data/WN18
```
We also provide `run.sh` script to reproduce following performance results.
### Experiment results
Here we report the experiment results on FB15k and WN18 dataset. The evaluation criteria are MR (mean rank), Mrr (mean reciprocal rank), Hit@N (The first N hit rate). The suffix `@f` means that we filter the exists relations of entities.
FB15k dataset
| Models | MR | Mrr | Hits@1 | Hits@3 | Hits@10| MR@f |Mrr@f|Hit1@f|Hit3@f|Hits10@f|
|--------|-----|-------|--------|--------|--------|-------|-----|------|------|--------|
| TransE | 215 | 0.205 | 0.093 | 0.234 | 0.446 | 74 |0.379| 0.235| 0.453| 0.647 |
| TransR | 304 | 0.193 | 0.092 | 0.211 | 0.418 | 156 |0.366| 0.232| 0.435| 0.623 |
| RotatE | 157 | 0.270 | 0.162 | 0.303 | 0.501 | 53 |0.478| 0.354| 0.547| 0.710 |
WN18 dataset
| Models | MR | Mrr | Hits@1 | Hits@3 | Hits@10| MR@f |Mrr@f|Hit1@f|Hit3@f|Hits10@f|
|--------|-----|-------|--------|--------|--------|-------|-----|------|------|--------|
| TransE | 219 | 0.338 | 0.082 | 0.523 | 0.800 | 208 |0.463| 0.135| 0.771| 0.932 |
| TransR | 321 | 0.370 | 0.096 | 0.591 | 0.810 | 309 |0.513| 0.158| 0.941| 0.941 |
| RotatE | 167 | 0.623 | 0.476 | 0.688 | 0.830 | 155 |0.915| 0.884| 0.941| 0.957 |
## References
[1]. [TransE: Translating embeddings for modeling multi-relational data.](https://ieeexplore.ieee.org/abstract/document/8047276)
[2]. [TransR: Learning entity and relation embeddings for knowledge graph completion.](http://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/viewFile/9571/9523)
[3]. [RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space.](https://arxiv.org/abs/1902.10197)
......@@ -19,10 +19,11 @@ import os
import numpy as np
from collections import defaultdict
from pgl.utils.logger import log
from pybloom import BloomFilter
#from pybloom import BloomFilter
class KBloader:
class KGLoader:
"""
load the FB15K
"""
......@@ -65,8 +66,9 @@ class KBloader:
def training_data_no_filter(self, train_triple_positive):
"""faster, no filter for exists triples"""
size = len(train_triple_positive)
train_triple_negative = train_triple_positive + 0
size = len(train_triple_positive) * self._neg_times
train_triple_negative = train_triple_positive.repeat(
self._neg_times, axis=0)
replace_head_probability = 0.5 * np.ones(size)
replace_entity_id = np.random.randint(self.entity_total, size=size)
random_num = np.random.random(size=size)
......@@ -122,7 +124,6 @@ class KBloader:
"""
n = len(self._triple_train)
rand_idx = np.random.permutation(n)
rand_idx = rand_idx % n
n_triple = len(rand_idx)
start = 0
while start < n_triple:
......
......@@ -99,8 +99,10 @@ class Evaluate:
feed=batch_feed_dict)
yield batch_feed_dict["test_triple"], head_score, tail_score
n_used_eval_triple += 1
print('[{:.3f}s] #evaluation triple: {}/{}'.format(
timeit.default_timer() - start, n_used_eval_triple, 5000))
if n_used_eval_triple % 500 == 0:
print('[{:.3f}s] #evaluation triple: {}/{}'.format(
timeit.default_timer(
) - start, n_used_eval_triple, self.reader.test_num))
res_reader = mp_reader_mapper(
reader=iterator,
......
......@@ -16,10 +16,13 @@ The script to run these models.
"""
import argparse
import timeit
import os
import numpy as np
import paddle.fluid as fluid
from data_loader import KBloader
from data_loader import KGLoader
from evalutate import Evaluate
from model import model_dict
from model.utils import load_var
from mp_mapper import mp_reader_mapper
from pgl.utils.logger import log
......@@ -49,6 +52,7 @@ def run_round(batch_iter,
run_time = 0
data_time = 0
t2 = timeit.default_timer()
start_epoch_time = timeit.default_timer()
for batch_feed_dict in batch_iter():
batch += 1
t1 = timeit.default_timer()
......@@ -62,8 +66,11 @@ def run_round(batch_iter,
if batch % log_per_step == 0:
tmp_epoch += 1
if prefix == "train":
log.info("Epoch %s Ava Loss %s" %
(epoch + tmp_epoch, tmp_loss / batch))
log.info("Epoch %s (%.7f sec) Train Loss: %.7f" %
(epoch + tmp_epoch,
timeit.default_timer() - start_epoch_time,
tmp_loss[0] / batch))
start_epoch_time = timeit.default_timer()
else:
log.info("Batch %s" % batch)
batch = 0
......@@ -84,7 +91,7 @@ def train(args):
:param args: all args.
:return: None
"""
kgreader = KBloader(
kgreader = KGLoader(
batch_size=args.batch_size,
data_dir=args.data_dir,
neg_mode=args.neg_mode,
......@@ -117,8 +124,8 @@ def train(args):
reader = mp_reader_mapper(
data_repeat,
func=kgreader.training_data_map,
#func=kgreader.training_data_no_filter,
func=kgreader.training_data_no_filter
if args.nofilter else kgreader.training_data_map,
num_works=args.sample_workers)
return reader
......@@ -148,6 +155,20 @@ def train(args):
exe = fluid.Executor(places[0])
exe.run(model.startup_program)
exe.run(fluid.default_startup_program())
if args.pretrain and model.model_name in ["TransR", "transr"]:
pretrain_ent = os.path.join(args.checkpoint,
model.ent_name.replace("TransR", "TransE"))
pretrain_rel = os.path.join(args.checkpoint,
model.rel_name.replace("TransR", "TransE"))
if os.path.exists(pretrain_ent):
print("loading pretrain!")
#var = fluid.global_scope().find_var(model.ent_name)
load_var(exe, model.train_program, model.ent_name, pretrain_ent)
#var = fluid.global_scope().find_var(model.rel_name)
load_var(exe, model.train_program, model.rel_name, pretrain_rel)
else:
raise ValueError("pretrain file {} not exists!".format(
pretrain_ent))
prog = fluid.CompiledProgram(model.train_program).with_data_parallel(
loss_name=model.train_fetch_vars[0].name)
......@@ -182,9 +203,9 @@ def train(args):
log_per_step=kgreader.train_num // args.batch_size,
epoch=epoch * args.evaluate_per_iteration)
log.info("epoch\t%s" % ((1 + epoch) * args.evaluate_per_iteration))
if True:
fluid.io.save_params(
exe, dirname=args.checkpoint, main_program=model.train_program)
fluid.io.save_params(
exe, dirname=args.checkpoint, main_program=model.train_program)
if not args.noeval:
eva = Evaluate(kgreader)
eva.launch_evaluation(
exe=exe,
......@@ -273,6 +294,22 @@ def main():
parser.add_argument(
'--neg_mode', type=bool, help='return neg mode flag', default=False)
parser.add_argument(
'--nofilter',
type=bool,
help='don\'t filter invalid examples',
default=False)
parser.add_argument(
'--pretrain',
type=bool,
help='pretrain for TransR model',
default=False)
parser.add_argument(
'--noeval',
type=bool,
help='whether to evaluate the result',
default=False)
args = parser.parse_args()
log.info(args)
train(args)
......
......@@ -13,9 +13,9 @@
# limitations under the License.
"""
RotatE:
"Learning entity and relation embeddings for knowledge graph completion."
Lin, Yankai, et al.
https://www.aaai.org/ocs/index.php/AAAI/AAAI15/paper/view/9571/9523
"RotatE: Knowledge Graph Embedding by Relational Rotation in Complex Space."
Sun, Zhiqing, et al.
https://arxiv.org/abs/1902.10197
"""
import paddle.fluid as fluid
from .Model import Model
......
......@@ -34,6 +34,7 @@ class TransE(Model):
learning_rate,
args,
optimizer="adam"):
self._neg_times = args.neg_times
super(TransE, self).__init__(
model_name="TransE",
data_reader=data_reader,
......@@ -84,6 +85,9 @@ class TransE(Model):
fluid.layers.abs(pos_score), 1, keep_dim=False)
neg = fluid.layers.reduce_sum(
fluid.layers.abs(neg_score), 1, keep_dim=False)
neg = fluid.layers.reshape(
neg, shape=[-1, self._neg_times], inplace=True)
loss = fluid.layers.reduce_mean(
fluid.layers.relu(pos - neg + self._margin))
return [loss]
......
......@@ -36,6 +36,7 @@ class TransR(Model):
args,
optimizer="adam"):
"""init"""
self._neg_times = args.neg_times
super(TransR, self).__init__(
model_name="TransR",
data_reader=data_reader,
......@@ -60,19 +61,19 @@ class TransR(Model):
dtype="float32",
name=self.rel_name,
default_initializer=fluid.initializer.Xavier())
init_values = np.tile(
np.identity(
self._hidden_size, dtype="float32").reshape(-1),
(self._relation_total, 1))
transfer_matrix = fluid.layers.create_parameter(
shape=[
self._relation_total, self._hidden_size * self._hidden_size
],
dtype="float32",
name=self._prefix + "transfer_matrix", )
# Here is a trick, must init with identity matrix to get good hit@10 performance.
fluid.layers.assign(
np.tile(
np.identity(
self._hidden_size, dtype="float32").reshape(-1),
(self._relation_total, 1)),
transfer_matrix)
name=self._prefix + "transfer_matrix",
default_initializer=fluid.initializer.NumpyArrayInitializer(
init_values))
return entity_embedding, relation_embedding, transfer_matrix
def score_with_l2_normalize(self, head, rel, tail):
......@@ -111,7 +112,7 @@ class TransR(Model):
pos_head_trans = self.matmul_with_expend_dims(pos_head, rel_matrix)
pos_tail_trans = self.matmul_with_expend_dims(pos_tail, rel_matrix)
trans_neg = False
trans_neg = True
if trans_neg:
rel_matrix_neg = fluid.layers.reshape(
lookup_table(self.train_neg_input[:, 1], transfer_matrix),
......@@ -133,6 +134,9 @@ class TransR(Model):
fluid.layers.abs(pos_score), -1, keep_dim=False)
neg = fluid.layers.reduce_sum(
fluid.layers.abs(neg_score), -1, keep_dim=False)
neg = fluid.layers.reshape(
neg, shape=[-1, self._neg_times], inplace=True)
loss = fluid.layers.reduce_mean(
fluid.layers.relu(pos - neg + self._margin))
return [loss]
......
......@@ -56,3 +56,64 @@ def lookup_table_gather(index, input):
:return:
"""
return fluid.layers.gather(index=index, input=input, overwrite=False)
def _clone_var_in_block_(block, var):
assert isinstance(var, fluid.Variable)
if var.desc.type() == fluid.core.VarDesc.VarType.LOD_TENSOR:
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
lod_level=var.lod_level,
persistable=True)
else:
return block.create_var(
name=var.name,
shape=var.shape,
dtype=var.dtype,
type=var.type,
persistable=True)
def load_var(executor, main_program=None, var=None, filename=None):
"""
load_var to certain program
:param executor: executor
:param main_program: the program to load
:param var: the variable name in main_program.
:file_name: the file name of the file to load.
:return: None
"""
load_prog = fluid.Program()
load_block = load_prog.global_block()
if main_program is None:
main_program = fluid.default_main_program()
if not isinstance(main_program, fluid.Program):
raise TypeError("program should be as Program type or None")
vars = list(filter(None, main_program.list_vars()))
# save origin param shape
orig_para_shape = {}
load_var_map = {}
for each_var in vars:
if each_var.name != var:
continue
assert isinstance(each_var, fluid.Variable)
if each_var.type == fluid.core.VarDesc.VarType.RAW:
continue
if isinstance(each_var, fluid.framework.Parameter):
orig_para_shape[each_var.name] = tuple(each_var.desc.get_shape())
new_var = _clone_var_in_block_(load_block, each_var)
if filename is not None:
load_block.append_op(
type='load',
inputs={},
outputs={'Out': [new_var]},
attrs={'file_path': filename})
executor.run(load_prog)
......@@ -65,12 +65,16 @@ def mp_reader_mapper(reader, func, num_works=4):
all_process.append(p)
data_iter = reader()
if not hasattr(data_iter, "__next__"):
__next__ = data_iter.next
else:
__next__ = data_iter.__next__
def next_data():
"""next_data"""
_next = None
try:
_next = data_iter.next()
_next = __next__()
except StopIteration:
# log.debug(traceback.format_exc())
pass
......
device=3
CUDA_VISIBLE_DEVICES=$device \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model TransE \
--data_dir ./data/FB15k \
--optimizer adam \
--batch_size=1024 \
--learning_rate=0.001 \
--epoch 200 \
--evaluate_per_iteration 200 \
--sample_workers 1 \
--margin 1.0 \
--nofilter True \
--neg_times 10 \
--neg_mode True
#--only_evaluate
# TransE FB15k
# -----Raw-Average-Results
# MeanRank: 214.94, MRR: 0.2051, Hits@1: 0.0929, Hits@3: 0.2343, Hits@10: 0.4458
# -----Filter-Average-Results
# MeanRank: 74.41, MRR: 0.3793, Hits@1: 0.2351, Hits@3: 0.4538, Hits@10: 0.6570
CUDA_VISIBLE_DEVICES=$device \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model TransE \
--data_dir ./data/WN18 \
--optimizer adam \
--batch_size=1024 \
--learning_rate=0.001 \
--epoch 100 \
--evaluate_per_iteration 100 \
--sample_workers 1 \
--margin 4 \
--nofilter True \
--neg_times 10 \
--neg_mode True
# TransE WN18
# -----Raw-Average-Results
# MeanRank: 219.08, MRR: 0.3383, Hits@1: 0.0821, Hits@3: 0.5233, Hits@10: 0.7997
# -----Filter-Average-Results
# MeanRank: 207.72, MRR: 0.4631, Hits@1: 0.1349, Hits@3: 0.7708, Hits@10: 0.9315
#for prertrain
CUDA_VISIBLE_DEVICES=$device \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model TransE \
--data_dir ./data/FB15k \
--optimizer adam \
--batch_size=512 \
--learning_rate=0.001 \
--epoch 30 \
--evaluate_per_iteration 30 \
--sample_workers 1 \
--margin 2.0 \
--nofilter True \
--noeval True \
--neg_times 10 \
--neg_mode True && \
CUDA_VISIBLE_DEVICES=$device \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model TransR \
--data_dir ./data/FB15k \
--optimizer adam \
--batch_size=512 \
--learning_rate=0.001 \
--epoch 200 \
--evaluate_per_iteration 200 \
--sample_workers 1 \
--margin 2.0 \
--pretrain True \
--nofilter True \
--neg_times 10 \
--neg_mode True
# FB15k TransR 200, pretrain 20
# -----Raw-Average-Results
# MeanRank: 303.81, MRR: 0.1931, Hits@1: 0.0920, Hits@3: 0.2109, Hits@10: 0.4181
# -----Filter-Average-Results
# MeanRank: 156.30, MRR: 0.3663, Hits@1: 0.2318, Hits@3: 0.4352, Hits@10: 0.6231
# for pretrain
CUDA_VISIBLE_DEVICES=$device \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model TransE \
--data_dir ./data/WN18 \
--optimizer adam \
--batch_size=512 \
--learning_rate=0.001 \
--epoch 30 \
--evaluate_per_iteration 30 \
--sample_workers 1 \
--margin 4.0 \
--nofilter True \
--noeval True \
--neg_times 10 \
--neg_mode True && \
CUDA_VISIBLE_DEVICES=$device \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model TransR \
--data_dir ./data/WN18 \
--optimizer adam \
--batch_size=512 \
--learning_rate=0.001 \
--epoch 100 \
--evaluate_per_iteration 100 \
--sample_workers 1 \
--margin 4.0 \
--pretrain True \
--nofilter True \
--neg_times 10 \
--neg_mode True
# TransR WN18 100, pretrain 30
# -----Raw-Average-Results
# MeanRank: 321.41, MRR: 0.3706, Hits@1: 0.0955, Hits@3: 0.5906, Hits@10: 0.8099
# -----Filter-Average-Results
# MeanRank: 309.15, MRR: 0.5126, Hits@1: 0.1584, Hits@3: 0.8601, Hits@10: 0.9409
CUDA_VISIBLE_DEVICES=$device \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model RotatE \
--data_dir ./data/FB15k \
--optimizer adam \
--batch_size=512 \
--learning_rate=0.001 \
--epoch 100 \
--evaluate_per_iteration 100 \
--sample_workers 10 \
--margin 8 \
--neg_times 10 \
--neg_mode True
# RotatE FB15k
# -----Raw-Average-Results
# MeanRank: 156.85, MRR: 0.2699, Hits@1: 0.1615, Hits@3: 0.3031, Hits@10: 0.5006
# -----Filter-Average-Results
# MeanRank: 53.35, MRR: 0.4776, Hits@1: 0.3537, Hits@3: 0.5473, Hits@10: 0.7062
CUDA_VISIBLE_DEVICES=$device \
FLAGS_fraction_of_gpu_memory_to_use=0.01 \
python main.py \
--use_cuda \
--model RotatE \
--data_dir ./data/WN18 \
--optimizer adam \
--batch_size=512 \
--learning_rate=0.001 \
--epoch 100 \
--evaluate_per_iteration 100 \
--sample_workers 10 \
--margin 6 \
--neg_times 10 \
--neg_mode True
# RotaE WN18
# -----Raw-Average-Results
# MeanRank: 167.27, MRR: 0.6025, Hits@1: 0.4764, Hits@3: 0.6880, Hits@10: 0.8298
# -----Filter-Average-Results
# MeanRank: 155.23, MRR: 0.9145, Hits@1: 0.8843, Hits@3: 0.9412, Hits@10: 0.9570
此差异已折叠。
# Graph Property Prediction for Open Graph Benchmark (OGB)
[The Open Graph Benchmark (OGB)](https://ogb.stanford.edu/) is a collection of benchmark datasets, data loaders, and evaluators for graph machine learning. Here we complete the Graph Property Prediction task based on PGL.
### Requirements
- paddlpaddle >= 1.7.1
- pgl 1.0.2
- ogb
NOTE: To install ogb that is fited for this project, run below command to install ogb
```
git clone https://github.com/snap-stanford/ogb.git
git checkout 482c40bc9f31fe25f9df5aa11c8fb657bd2b1621
python setup.py install
```
### How to run
For example, use GPU to train model on ogbg-molhiv dataset and ogb-molpcba dataset.
```
CUDA_VISIBLE_DEVICES=1 python -u main.py --config hiv_config.yaml --use_cuda
CUDA_VISIBLE_DEVICES=2 python -u main.py --config pcba_config.yaml --use_cuda
```
If you want to use CPU to train model, environment variables `CPU_NUM` should be specified and should be in the range of 1 to N, where N is the total CPU number on your machine.
```
CPU_NUM=1 python -u main.py --config hiv_config.yaml
CPU_NUM=1 python -u main.py --config pcba_config.yaml
```
### Experiment results
| model | hiv (rocauc)| pcba (prcauc)|
|-------|-------------|--------------|
| GIN |0.7719 (0.0079) | 0.2232 (0.0018) |
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import
import os
import time
import argparse
from utils.args import ArgumentGroup
# yapf: disable
parser = argparse.ArgumentParser(__doc__)
parser.add_argument('--use_cuda', action='store_true')
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("init_checkpoint", str, None, "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params", str, None,
"Init pre-training params which preforms fine-tuning from. If the "
"arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("./save_dir", str, "./checkpoints", "Path to save checkpoints.")
model_g.add_arg("hidden_size", int, 128, "hidden size.")
train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch", int, 3, "Number of epoches for fine-tuning.")
train_g.add_arg("learning_rate", float, 5e-5, "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler", str, "linear_warmup_decay",
"scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay", float, 0.01, "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float, 0.1,
"Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps", int, 10000, "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps", int, 1000, "The steps interval to evaluate model performance.")
train_g.add_arg("use_dynamic_loss_scaling", bool, True, "Whether to use dynamic loss scaling.")
train_g.add_arg("init_loss_scaling", float, 102400,
"Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")
train_g.add_arg("test_save", str, "./checkpoints/test_result", "test_save")
train_g.add_arg("metric", str, "simple_accuracy", "metric")
train_g.add_arg("incr_every_n_steps", int, 100, "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf", int, 2,
"Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio", float, 2.0,
"The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio", float, 0.8,
"The less-than-one-multiplier to use when decreasing.")
log_g = ArgumentGroup(parser, "logging", "logging related.")
log_g.add_arg("skip_steps", int, 10, "The steps interval to print loss.")
log_g.add_arg("verbose", bool, False, "Whether to output verbose log.")
log_g.add_arg("log_dir", str, './logs/', "Whether to output verbose log.")
data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("tokenizer", str, "FullTokenizer",
"ATTENTION: the INPUT must be splited by Word with blank while using SentencepieceTokenizer or WordsegTokenizer")
data_g.add_arg("train_set", str, None, "Path to training data.")
data_g.add_arg("test_set", str, None, "Path to test data.")
data_g.add_arg("dev_set", str, None, "Path to validation data.")
data_g.add_arg("aug1_type", str, "scheme1", "augment type")
data_g.add_arg("aug2_type", str, "scheme1", "augment type")
data_g.add_arg("batch_size", int, 32, "Total examples' number in batch for training. see also --in_tokens.")
data_g.add_arg("predict_batch_size", int, None, "Total examples' number in batch for predict. see also --in_tokens.")
data_g.add_arg("random_seed", int, None, "Random seed.")
data_g.add_arg("buf_size", int, 1000, "Random seed.")
run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("num_iteration_per_drop_scope", int, 10, "Iteration intervals to drop scope.")
run_type_g.add_arg("do_train", bool, True, "Whether to perform training.")
run_type_g.add_arg("do_val", bool, True, "Whether to perform evaluation on dev data set.")
run_type_g.add_arg("do_test", bool, True, "Whether to perform evaluation on test data set.")
run_type_g.add_arg("metrics", bool, True, "Whether to perform evaluation on test data set.")
run_type_g.add_arg("shuffle", bool, True, "")
run_type_g.add_arg("for_cn", bool, True, "model train for cn or for other langs.")
run_type_g.add_arg("num_workers", int, 1, "use multiprocess to generate graph")
run_type_g.add_arg("output_dir", str, None, "path to save model")
run_type_g.add_arg("config", str, None, "configure yaml file")
run_type_g.add_arg("n", str, None, "task name")
run_type_g.add_arg("task_name", str, None, "task name")
run_type_g.add_arg("pretrain", bool, False, "Whether do pretrian")
run_type_g.add_arg("pretrain_name", str, None, "pretrain task name")
run_type_g.add_arg("pretrain_config", str, None, "pretrain config.yaml file")
run_type_g.add_arg("pretrain_model_step", str, None, "pretrain model step")
run_type_g.add_arg("model_type", str, "BaseLineModel", "pretrain model step")
run_type_g.add_arg("num_class", int, 1, "number class")
run_type_g.add_arg("dataset_name", str, None, "finetune dataset name")
run_type_g.add_arg("eval_metrics", str, None, "evaluate metrics")
run_type_g.add_arg("task_type", str, None, "regression or classification")
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
此差异已折叠。
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册