提交 c4e0a874 编写于 作者: Y Yelrose

reproduce paper results

上级 8a743f2c
......@@ -6,7 +6,21 @@ This page tries to reproduce all the **Graph Neural Network** paper for Citation
All datasets are runned with public split of **semi-supervised** settings.
All datasets are runned with public split of **semi-supervised** settings. And we report the averarge accuracy by running 10 times.
# Experiment Results
| Model | Cora | Pubmed | Citeseer | Remarks |
| ------------------------------------------------------------ | ------------ | ------------ | ------------ | --------------------------------------------------------- |
| [Vanilla GCN (Kipf 2017)](https://openreview.net/pdf?id=SJU4ayYgl ) | 0.807(0.010) | 0.794(0.003) | 0.710(0.007) | |
| [GAT (Veličković 2017)](https://arxiv.org/pdf/1710.10903.pdf) | 0.834(0.004) | 0.772(0.004) | 0.700(0.006) | |
| [SGC(Wu 2019)](https://arxiv.org/pdf/1902.07153.pdf) | 0.818(0.000) | 0.782(0.000) | 0.708(0.000) | |
| [APPNP (Johannes 2018)](https://arxiv.org/abs/1810.05997) | 0.846(0.003) | 0.803(0.002) | 0.719(0.003) | Almost the same with the results reported in Appendix E. |
| [GCNII (64 Layers, 1500 Epochs, Chen 2020)](https://arxiv.org/pdf/2007.02133.pdf) | 0.846(0.003) | 0.798(0.003) | 0.724(0.006) | |
......
......@@ -6,4 +6,4 @@ feat_drop: 0.6
attn_drop: 0.6
num_heads: 8
hidden_size: 8
edge_dropout: 0.1
edge_dropout: 0.0
......@@ -131,7 +131,9 @@ def main(args, config):
cal_test_acc[np.argmin(cal_val_loss)]))
best_test.append(cal_test_acc[np.argmin(cal_val_loss)])
log.info("Best Test Accuracy: %f ( stddev: %f )" % (np.mean(best_test), np.std(best_test)))
log.info("Dataset: %s Best Test Accuracy: %f ( stddev: %f )" % (args.dataset, np.mean(best_test), np.std(best_test)))
print("Dataset: %s Best Test Accuracy: %f ( stddev: %f )" % (args.dataset, np.mean(best_test), np.std(best_test)))
......@@ -142,7 +144,7 @@ if __name__ == '__main__':
parser.add_argument("--use_cuda", action='store_true', help="use_cuda")
parser.add_argument("--conf", type=str, help="config file for models")
parser.add_argument("--epoch", type=int, default=200, help="Epoch")
parser.add_argument("--runs", type=int, default=5, help="runs")
parser.add_argument("--runs", type=int, default=10, help="runs")
parser.add_argument("--feature_pre_normalize", type=bool, default=True, help="pre_normalize feature")
args = parser.parse_args()
config = edict(yaml.load(open(args.conf), Loader=yaml.FullLoader))
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册