未验证 提交 78b7c079 编写于 作者: W Weiyue Su 提交者: GitHub

Update README.md

上级 eeb267da
......@@ -30,7 +30,7 @@ The newly released PGL supports heterogeneous graph learning on both walk based
## Highlight: Efficiency - Support Scatter-Gather and LodTensor Message Passing
One of the most important benefits of graph neural networks compared to other models is the ability to use node-to-node connectivity information, but coding the communication between nodes is very cumbersome. At PGL we adopt **Message Passing Paradigm** similar to [DGL](https://github.com/dmlc/dgl) to help to build a customize graph neural network easily. Users only need to write ```send``` and ```recv``` functions to easily implement a simple GCN. As shown in the following figure, for the first step the send function is defined on the edges of the graph, and the user can customize the send function ![](http://latex.codecogs.com/gif.latex?\\phi^e}) to send the message from the source to the target node. For the second step, the recv function ![](http://latex.codecogs.com/gif.latex?\\phi^v}) is responsible for aggregating ![](http://latex.codecogs.com/gif.latex?\\oplus}) messages together from different sources.
One of the most important benefits of graph neural networks compared to other models is the ability to use node-to-node connectivity information, but coding the communication between nodes is very cumbersome. At PGL we adopt **Message Passing Paradigm** similar to [DGL](https://github.com/dmlc/dgl) to help to build a customize graph neural network easily. Users only need to write ```send``` and ```recv``` functions to easily implement a simple GCN. As shown in the following figure, for the first step the send function is defined on the edges of the graph, and the user can customize the send function ![](http://latex.codecogs.com/gif.latex?\\phi^e) to send the message from the source to the target node. For the second step, the recv function ![](http://latex.codecogs.com/gif.latex?\\phi^v) is responsible for aggregating ![](http://latex.codecogs.com/gif.latex?\\oplus) messages together from different sources.
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册