Skip to content
体验新版
项目
组织
正在加载...
登录
切换导航
打开侧边栏
PaddlePaddle
PGL
提交
4a3aff88
P
PGL
项目概览
PaddlePaddle
/
PGL
通知
76
Star
4
Fork
0
代码
文件
提交
分支
Tags
贡献者
分支图
Diff
Issue
11
列表
看板
标记
里程碑
合并请求
1
Wiki
0
Wiki
分析
仓库
DevOps
项目成员
Pages
P
PGL
项目概览
项目概览
详情
发布
仓库
仓库
文件
提交
分支
标签
贡献者
分支图
比较
Issue
11
Issue
11
列表
看板
标记
里程碑
合并请求
1
合并请求
1
Pages
分析
分析
仓库分析
DevOps
Wiki
0
Wiki
成员
成员
收起侧边栏
关闭侧边栏
动态
分支图
创建新Issue
提交
Issue看板
提交
4a3aff88
编写于
7月 17, 2020
作者:
Z
Zhong Hui
浏览文件
操作
浏览文件
下载
电子邮件补丁
差异文件
refine
上级
cea0041b
变更
4
隐藏空白更改
内联
并排
Showing
4 changed file
with
73 addition
and
20 deletion
+73
-20
ogb_examples/nodeproppred/ogbn-mag/README.md
ogb_examples/nodeproppred/ogbn-mag/README.md
+2
-2
ogb_examples/nodeproppred/ogbn-mag/main.py
ogb_examples/nodeproppred/ogbn-mag/main.py
+64
-16
pgl/contrib/ogb/nodeproppred/dataset_pgl.py
pgl/contrib/ogb/nodeproppred/dataset_pgl.py
+1
-1
pgl/graph.py
pgl/graph.py
+6
-1
未找到文件。
ogb_examples/nodeproppred/ogbn-mag/README.md
浏览文件 @
4a3aff88
...
...
@@ -23,7 +23,7 @@ In this repo, we use RGCN to deal with the ogbn-mag dataset. ogbn-mag dataset is
-
test_batch_size: batch_size in the test phase
### Proformance
We evaulate
8
times on the ogbn-mag dataset. Here is the result.
We evaulate
10
times on the ogbn-mag dataset. Here is the result.
Dataset| Accuracy| std|
--|--|--|
ogbn-mag | 0.47
27 | 0.0031
|
ogbn-mag | 0.47
34 | 0.0030
|
ogb_examples/nodeproppred/ogbn-mag/main.py
浏览文件 @
4a3aff88
...
...
@@ -15,14 +15,16 @@
import
os
import
argparse
import
copy
import
numpy
as
np
import
pgl
import
paddle.fluid
as
fluid
import
numpy
as
np
import
paddle.fluid
as
fluid
from
collections
import
OrderedDict
from
paddle.fluid.contrib
import
summary
from
pgl.utils.logger
import
log
from
pgl.utils.share_numpy
import
ToShareMemGraph
from
pgl.contrib.ogb.nodeproppred.dataset_pgl
import
PglNodePropPredDataset
#from pgl.contrib.ogb.nodeproppred.dataset_pgl import PglNodePropPredDataset
from
ogb.nodeproppred
import
NodePropPredDataset
,
Evaluator
from
rgcn
import
RGCNModel
,
cross_entropy_loss
from
dataloader
import
sample_loader
...
...
@@ -49,40 +51,87 @@ def run_epoch(args, exe, fetch_list, homograph, hetergraph, gw, train_program,
for
epoch
in
range
(
args
.
epoch
):
for
phase
in
[
'train'
,
'valid'
,
'test'
]:
running_loss
=
[]
running_acc
=
[]
predict
=
[]
label
=
[]
for
feed_dict
in
sample_loader
(
args
,
phase
,
homograph
,
hetergraph
,
gw
,
split_real_idx
[
phase
][
'paper'
],
all_label
[
'paper'
][
split_idx
[
phase
][
'paper'
]]):
# print("train_shape\t", feed_dict['train_index'].shape)
# print("allnode_shape\t", feed_dict['sub_node_index'].shape)
res
=
exe
.
run
(
train_program
if
phase
==
'train'
else
test_program
,
feed
=
feed_dict
,
fetch_list
=
fetch_list
,
use_prune
=
True
)
running_loss
.
append
(
res
[
0
])
running_acc
.
append
(
res
[
1
])
if
phase
==
'train'
:
log
.
info
(
"training_acc %f"
%
res
[
1
])
predict
.
append
(
res
[
2
].
reshape
(
-
1
,
1
))
label
.
append
(
feed_dict
[
"label"
])
avg_loss
=
sum
(
running_loss
)
/
len
(
running_loss
)
avg_acc
=
sum
(
running_acc
)
/
len
(
running_acc
)
predict
=
np
.
vstack
(
predict
)
label
=
np
.
vstack
(
label
)
evaluator
=
Evaluator
(
name
=
"ogbn-mag"
)
input_dict
=
{
"y_true"
:
label
,
"y_pred"
:
predict
}
result_dict
=
evaluator
.
eval
(
input_dict
)
if
phase
==
'valid'
:
if
avg_acc
>
best_acc
:
if
result_dict
[
'acc'
]
>
best_acc
:
fluid
.
io
.
save_persistables
(
exe
,
'./output/checkpoint'
,
test_program
)
best_acc
=
avg_acc
best_acc
=
result_dict
[
'acc'
]
log
.
info
(
'new best_acc %f'
%
best_acc
)
log
.
info
(
"%d, %s %f %f"
%
(
epoch
,
phase
,
avg_loss
,
avg_acc
))
log
.
info
(
"%d, %s %f %f"
%
(
epoch
,
phase
,
avg_loss
,
result_dict
[
'acc'
]))
def
ogb2pgl_hetergraph
(
graph
):
node_index
=
OrderedDict
()
node_types
=
[]
num_nodes
=
0
for
k
,
v
in
graph
[
"num_nodes_dict"
].
items
():
node_types
.
append
(
np
.
ones
(
shape
=
[
v
,
1
],
dtype
=
'int64'
)
*
len
(
node_index
))
node_index
[
k
]
=
(
v
,
num_nodes
)
num_nodes
+=
v
# logger.info(node_index)
node_types
=
np
.
vstack
(
node_types
)
edges_by_types
=
{}
for
k
,
v
in
graph
[
"edge_index_dict"
].
items
():
v
[
0
,
:]
+=
node_index
[
k
[
0
]][
1
]
v
[
1
,
:]
+=
node_index
[
k
[
2
]][
1
]
inverse_v
=
np
.
array
(
v
)
inverse_v
[
0
,
:]
=
v
[
1
,
:]
inverse_v
[
1
,
:]
=
v
[
0
,
:]
if
k
[
0
]
!=
k
[
2
]:
edges_by_types
[
"{}2{}"
.
format
(
k
[
0
][
0
],
k
[
2
][
0
])]
=
v
.
T
edges_by_types
[
"{}2{}"
.
format
(
k
[
2
][
0
],
k
[
0
][
0
])]
=
inverse_v
.
T
else
:
edges
=
np
.
hstack
((
v
,
inverse_v
))
edges_by_types
[
"{}2{}"
.
format
(
k
[
0
][
0
],
k
[
2
][
0
])]
=
edges
.
T
node_features
=
{
'index'
:
np
.
array
([
i
for
i
in
range
(
num_nodes
)]).
reshape
(
-
1
,
1
).
astype
(
np
.
int64
)
}
g
=
pgl
.
heter_graph
.
HeterGraph
(
num_nodes
=
num_nodes
,
edges
=
edges_by_types
,
node_types
=
node_types
,
node_feat
=
node_features
)
g
.
edge_feat_dict
=
graph
[
'edge_feat_dict'
]
g
.
node_feat_dict
=
graph
[
'node_feat_dict'
]
g
.
num_node_dict
=
node_index
return
g
def
main
(
args
):
num_class
=
349
embedding_size
=
128
dataset
=
PglNodePropPredDataset
(
'ogbn-papers100M
'
)
dataset
=
NodePropPredDataset
(
'ogbn-mag
'
)
g
,
all_label
=
dataset
[
0
]
g
=
ogb2pgl_hetergraph
(
g
)
num_nodes
=
g
.
num_nodes
num_class
=
dataset
.
num_classes
homograph
=
hetero2homo
(
g
)
for
key
in
g
.
edge_types_info
():
...
...
@@ -169,6 +218,7 @@ def main(args):
feat
=
model
.
forward
(
sub_node_feat
)
feat
=
fluid
.
layers
.
gather
(
feat
,
train_index
)
loss
,
acc
=
cross_entropy_loss
(
feat
,
label
)
predict
=
fluid
.
layers
.
argmax
(
feat
,
-
1
)
opt
=
fluid
.
optimizer
.
Adam
(
learning_rate
=
args
.
lr
)
opt
.
minimize
(
loss
)
...
...
@@ -185,12 +235,10 @@ def main(args):
dirname
=
os
.
path
.
join
(
args
.
output_path
,
'checkpoint'
),
main_program
=
test_program
)
fetch_list
=
[
loss
.
name
,
acc
.
name
]
fetch_list
=
[
loss
.
name
,
acc
.
name
,
predict
.
name
]
run_epoch
(
args
,
exe
,
fetch_list
,
homograph
,
g
,
gw
,
train_program
,
test_program
,
all_label
,
split_idx
,
split_real_idx
)
return
None
def
full_batch
(
g
,
gw
,
all_label
,
split_idx
,
split_real_idx
,
exe
,
train_program
,
test_program
,
fetch_list
):
...
...
pgl/contrib/ogb/nodeproppred/dataset_pgl.py
浏览文件 @
4a3aff88
...
...
@@ -56,7 +56,7 @@ class PglNodePropPredDataset(object):
self
.
num_tasks
=
int
(
self
.
meta_info
[
self
.
name
][
"num tasks"
])
self
.
task_type
=
self
.
meta_info
[
self
.
name
][
"task type"
]
self
.
eval_metric
=
self
.
meta_info
[
self
.
name
][
"eval metric"
]
self
.
__num_classes__
=
int
(
self
.
meta_info
[
self
.
name
][
"num classes"
])
self
.
num_classes
=
int
(
self
.
meta_info
[
self
.
name
][
"num classes"
])
self
.
is_hetero
=
self
.
meta_info
[
self
.
name
][
"is hetero"
]
super
(
PglNodePropPredDataset
,
self
).
__init__
()
...
...
pgl/graph.py
浏览文件 @
4a3aff88
...
...
@@ -177,6 +177,8 @@ class Graph(object):
os
.
makedirs
(
path
)
np
.
save
(
os
.
path
.
join
(
path
,
'num_nodes.npy'
),
self
.
_num_nodes
)
np
.
save
(
os
.
path
.
join
(
path
,
'edges.npy'
),
self
.
_edges
)
np
.
save
(
os
.
path
.
join
(
path
,
'num_graph.npy'
),
self
.
_num_graph
)
np
.
save
(
os
.
path
.
join
(
path
,
'graph_lod.npy'
),
self
.
_graph_lod
)
if
self
.
_adj_src_index
:
self
.
_adj_src_index
.
dump
(
os
.
path
.
join
(
path
,
'adj_src'
))
...
...
@@ -201,11 +203,14 @@ class Graph(object):
""" load graph from dumped files.
"""
if
not
os
.
path
.
exists
(
path
):
raise
ValueError
(
"Not find path {}, can't load graph"
.
format
(
path
))
raise
ValueError
(
"Can't find path {}, stop loading graph!"
.
format
(
path
))
self
.
_num_nodes
=
np
.
load
(
os
.
path
.
join
(
path
,
'num_nodes.npy'
))
self
.
_edges
=
np
.
load
(
os
.
path
.
join
(
path
,
'edges.npy'
),
mmap_mode
=
mmap_mode
)
self
.
_num_graph
=
np
.
load
(
os
.
path
.
join
(
path
,
'num_graph.npy'
))
self
.
_graph_lod
=
np
.
load
(
os
.
path
.
join
(
path
,
'graph_lod.npy'
))
if
os
.
path
.
isdir
(
os
.
path
.
join
(
path
,
'adj_src'
)):
edge_index
=
EdgeIndex
()
edge_index
.
load
(
os
.
path
.
join
(
path
,
'adj_src'
),
mmap_mode
=
mmap_mode
)
...
...
编辑
预览
Markdown
is supported
0%
请重试
或
添加新附件
.
添加附件
取消
You are about to add
0
people
to the discussion. Proceed with caution.
先完成此消息的编辑!
取消
想要评论请
注册
或
登录