提交 2dfbbe82 编写于 作者: Y Yelrose

add graph_gather op; rename graph_pool.py as graph_op.py

上级 69546bdc
...@@ -18,10 +18,10 @@ from pgl.layers import conv ...@@ -18,10 +18,10 @@ from pgl.layers import conv
from pgl.layers.conv import * from pgl.layers.conv import *
from pgl.layers import set2set from pgl.layers import set2set
from pgl.layers.set2set import * from pgl.layers.set2set import *
from pgl.layers import graph_pool from pgl.layers import graph_op
from pgl.layers.graph_pool import * from pgl.layers.graph_op import *
__all__ = [] __all__ = []
__all__ += conv.__all__ __all__ += conv.__all__
__all__ += set2set.__all__ __all__ += set2set.__all__
__all__ += graph_pool.__all__ __all__ += graph_op.__all__
...@@ -14,12 +14,13 @@ ...@@ -14,12 +14,13 @@
"""This package implements common layers to help building """This package implements common layers to help building
graph neural networks. graph neural networks.
""" """
import paddle.fluid as fluid import paddle.fluid as F
import paddle.fluid.layers as L
from pgl import graph_wrapper from pgl import graph_wrapper
from pgl.utils import paddle_helper from pgl.utils import paddle_helper
from pgl.utils import op from pgl.utils import op
__all__ = ['graph_pooling', 'graph_norm'] __all__ = ['graph_pooling', 'graph_norm', 'graph_gather']
def graph_pooling(gw, node_feat, pool_type): def graph_pooling(gw, node_feat, pool_type):
...@@ -38,7 +39,7 @@ def graph_pooling(gw, node_feat, pool_type): ...@@ -38,7 +39,7 @@ def graph_pooling(gw, node_feat, pool_type):
A tensor with shape (num_graph, hidden_size) A tensor with shape (num_graph, hidden_size)
""" """
graph_feat = op.nested_lod_reset(node_feat, gw.graph_lod) graph_feat = op.nested_lod_reset(node_feat, gw.graph_lod)
graph_feat = fluid.layers.sequence_pool(graph_feat, pool_type) graph_feat = L.sequence_pool(graph_feat, pool_type)
return graph_feat return graph_feat
...@@ -57,11 +58,41 @@ def graph_norm(gw, feature): ...@@ -57,11 +58,41 @@ def graph_norm(gw, feature):
Return: Return:
A tensor with shape (num_nodes, hidden_size) A tensor with shape (num_nodes, hidden_size)
""" """
nodes = fluid.layers.fill_constant( nodes = L.fill_constant(
[gw.num_nodes, 1], dtype="float32", value=1.0) [gw.num_nodes, 1], dtype="float32", value=1.0)
norm = graph_pooling(gw, nodes, pool_type="sum") norm = graph_pooling(gw, nodes, pool_type="sum")
norm = fluid.layers.sqrt(norm) norm = L.sqrt(norm)
feature_lod = op.nested_lod_reset(feature, gw.graph_lod) feature_lod = op.nested_lod_reset(feature, gw.graph_lod)
norm = fluid.layers.sequence_expand_as(norm, feature_lod) norm = L.sequence_expand_as(norm, feature_lod)
norm.stop_gradient = True norm.stop_gradient = True
return feature_lod / norm return feature_lod / norm
def graph_gather(gw, feature, index):
"""Implementation of graph gather
Gather the corresponding index for each graph.
Args:
gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
feature: A tensor with shape (num_nodes, ).
index (int32): A tensor with K-rank where the first dim denotes the graph.
Shape (num_graph, ) or (num_graph, k1, k2, k3, ..., kn).
WARNING: We dont support negative index.
Return:
A tensor with shape (num_graph, k1, k2, k3, ..., kn, hidden_size)
"""
shape = L.shape(index)
index = index + gw.graph_lod[:-1]
index = L.reshape(index, [-1])
feature = L.gather(feature, index, overwrite=False)
new_shape = []
for i in range(shape.shape[0]):
new_shape.append(shape[i])
new_shape.append(-1)
feature = L.reshape(feature, new_shape)
return feature
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
This file is for testing gin layer.
"""
from __future__ import division
from __future__ import absolute_import
from __future__ import print_function
from __future__ import unicode_literals
import unittest
import numpy as np
import paddle.fluid as F
import paddle.fluid.layers as L
import pgl
from pgl import graph
from pgl import graph_wrapper
class GraphGatherTest(unittest.TestCase):
"""GraphGatherTest
"""
def test_graph_gather(self):
"""test_graph_gather
"""
np.random.seed(1)
graph_list = []
num_graph = 10
for _ in range(num_graph):
num_nodes = np.random.randint(5, 20)
edges = np.random.randint(low=0, high=num_nodes, size=(10, 2))
node_feat = {"feature": np.random.rand(num_nodes, 4).astype("float32")}
g = graph.Graph(num_nodes=num_nodes, edges=edges, node_feat=node_feat)
graph_list.append(g)
gg = graph.MultiGraph(graph_list)
use_cuda = False
place = F.CUDAPlace(0) if use_cuda else F.CPUPlace()
prog = F.Program()
startup_prog = F.Program()
with F.program_guard(prog, startup_prog):
gw = graph_wrapper.GraphWrapper(
name='graph',
place=place,
node_feat=g.node_feat_info(),
edge_feat=g.edge_feat_info())
index = L.data(name="index", dtype="int32", shape=[-1])
feats = pgl.layers.graph_gather(gw, gw.node_feat["feature"], index)
exe = F.Executor(place)
exe.run(startup_prog)
feed_dict = gw.to_feed(gg)
feed_dict["index"] = np.zeros(num_graph, dtype="int32")
ret = exe.run(prog, feed=feed_dict, fetch_list=[feats])
self.assertEqual(list(ret[0].shape), [num_graph, 4])
for i in range(num_graph):
dist = (ret[0][i] - graph_list[i].node_feat["feature"][0])
dist = np.sum(dist ** 2)
self.assertLess(dist, 1e-15)
if __name__ == "__main__":
unittest.main()
...@@ -267,3 +267,9 @@ def masked_select(input, mask): ...@@ -267,3 +267,9 @@ def masked_select(input, mask):
index = fluid.layers.where(mask) index = fluid.layers.where(mask)
return fluid.layers.gather(input, index) return fluid.layers.gather(input, index)
def ensure_dtype(input, dtype):
if input.dtype == dtype:
return input
else:
return fluid.layers.cast(input, dtype=dtype)
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册