提交 11334cda 编写于 作者: Y yelrose

Modified README.zh.md

上级 cf88cbf9
......@@ -28,7 +28,7 @@ Paddle Graph Learning (PGL)是一个基于[PaddlePaddle](https://github.com/Padd
return fluid.layers.sequence_pool(msg, "sum")
```
尽管PGL用了一些内核融合(kernel fusion)的方法来将常用的sum,max等聚合函数用scatter-gather进行优化。但是对于**复杂的用户定义函数**,他们使用的Degree Bucketing算法,仅仅使用串行的方案来处理不同的分块,并不同充分利用GPU进行加速。然而,在PGL中我们使用基于LodTensor的消息传递能够充分地利用GPU的并行优化,即使不使用scatter-gather的优化,PGL仍然有高效的性能表现。当然,我们也是提供了scatter优化的聚合函数。
尽管DGL用了一些内核融合(kernel fusion)的方法来将常用的sum,max等聚合函数用scatter-gather进行优化。但是对于**复杂的用户定义函数**,他们使用的Degree Bucketing算法,仅仅使用串行的方案来处理不同的分块,并不同充分利用GPU进行加速。然而,在PGL中我们使用基于LodTensor的消息传递能够充分地利用GPU的并行优化,即使不使用scatter-gather的优化,PGL仍然有高效的性能表现。当然,我们也是提供了scatter优化的聚合函数。
## 性能测试
......
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册