未验证 提交 0da137f9 编写于 作者: S sys1874 提交者: GitHub

Merge pull request #123 from sys1874/main

update readme
## Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification
This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](). The steps are:
This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](https://arxiv.org/pdf/2009.03509.pdf). The steps are:
### Install environment:
```
......@@ -12,14 +12,14 @@ This experiment is based on stanford OGB (1.2.1) benchmark. The description of
```
### Arxiv dataset:
1. ```python main_arxiv.py --place 0 --log_file arxiv_baseline.txt``` to get the baseline result of arxiv dataset.
2. ```python main_arxiv.py --place 0 --use_label_e --log_file arxiv_unipm.txt``` to get the UniPM result of arxiv dataset.
2. ```python main_arxiv.py --place 0 --use_label_e --log_file arxiv_unimp.txt``` to get the UniMP result of arxiv dataset.
### Products dataset:
1. ```python main_product.py --place 0 --log_file product_label_embedding.txt --use_label_e``` to get the UniPM result of Products dataset.
1. ```python main_product.py --place 0 --log_file product_unimp.txt --use_label_e``` to get the UniMP result of Products dataset.
### Proteins dataset:
1. ```python main_protein.py --place 0 --log_file protein_baseline.txt ``` to get the baseline result of Proteins dataset.
2. ```python main_protein.py --place 0 --use_label_e --log_file protein_label_embedding.txt``` to get the UniPM result of Proteins dataset.
2. ```python main_protein.py --place 0 --use_label_e --log_file protein_unimp.txt``` to get the UniMP result of Proteins dataset.
### The **detailed hyperparameter** is:
......@@ -40,9 +40,9 @@ Arxiv_dataset(Full Batch): Products_dataset(NeighborSampler):
| Model |Test Accuracy |Valid Accuracy | Parameters | Hardware |
| ------------------ |-------------- | --------------- | -------------- |----------|
| Arxiv_baseline | 0.7225 ± 0.0015 | 0.7367 ± 0.0012 | 468,369 | Tesla V100 (32GB) |
| Arxiv_UniPM | 0.7311 ± 0.0021 | 0.7450 ± 0.0005 | 473,489 | Tesla V100 (32GB) |
| Arxiv_UniMP | 0.7311 ± 0.0021 | 0.7450 ± 0.0005 | 473,489 | Tesla V100 (32GB) |
| Products_baseline | 0.8023 ± 0.0026 | 0.9286 ± 0.0017 | 1,470,905 | Tesla V100 (32GB) |
| Products_UniPM | 0.8256 ± 0.0031 | 0.9308 ± 0.0017 | 1,475,605 | Tesla V100 (32GB) |
| Products_UniMP | 0.8256 ± 0.0031 | 0.9308 ± 0.0017 | 1,475,605 | Tesla V100 (32GB) |
| Proteins_baseline | 0.8611 ± 0.0017 | 0.9128 ± 0.0007 | 1,879,664 | Tesla V100 (32GB) |
| Proteins_UniPM | 0.8642 ± 0.0008 | 0.9175 ± 0.0007 | 1,909,104 | Tesla V100 (32GB) |
| Proteins_UniMP | 0.8642 ± 0.0008 | 0.9175 ± 0.0007 | 1,909,104 | Tesla V100 (32GB) |
Markdown is supported
0% .
You are about to add 0 people to the discussion. Proceed with caution.
先完成此消息的编辑!
想要评论请 注册