diff --git a/ogb_examples/nodeproppred/unimp/README.MD b/ogb_examples/nodeproppred/unimp/README.MD index ff82dc9cef6ec9bb4d83883a8a8308fcbeb1ed97..d63f65edf103bfe3017924be7595a5f1b42b9606 100644 --- a/ogb_examples/nodeproppred/unimp/README.MD +++ b/ogb_examples/nodeproppred/unimp/README.MD @@ -1,6 +1,6 @@ ## Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification -This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](). The steps are: +This experiment is based on stanford OGB (1.2.1) benchmark. The description of 《Masked Label Prediction: Unified Massage Passing Model for Semi-Supervised Classification》 is [avaiable here](https://arxiv.org/pdf/2009.03509.pdf). The steps are: ### Install environment: ``` @@ -12,14 +12,14 @@ This experiment is based on stanford OGB (1.2.1) benchmark. The description of ``` ### Arxiv dataset: 1. ```python main_arxiv.py --place 0 --log_file arxiv_baseline.txt``` to get the baseline result of arxiv dataset. - 2. ```python main_arxiv.py --place 0 --use_label_e --log_file arxiv_unipm.txt``` to get the UniPM result of arxiv dataset. + 2. ```python main_arxiv.py --place 0 --use_label_e --log_file arxiv_unimp.txt``` to get the UniMP result of arxiv dataset. ### Products dataset: - 1. ```python main_product.py --place 0 --log_file product_label_embedding.txt --use_label_e``` to get the UniPM result of Products dataset. + 1. ```python main_product.py --place 0 --log_file product_unimp.txt --use_label_e``` to get the UniMP result of Products dataset. ### Proteins dataset: 1. ```python main_protein.py --place 0 --log_file protein_baseline.txt ``` to get the baseline result of Proteins dataset. - 2. ```python main_protein.py --place 0 --use_label_e --log_file protein_label_embedding.txt``` to get the UniPM result of Proteins dataset. + 2. ```python main_protein.py --place 0 --use_label_e --log_file protein_unimp.txt``` to get the UniMP result of Proteins dataset. ### The **detailed hyperparameter** is: @@ -40,9 +40,9 @@ Arxiv_dataset(Full Batch): Products_dataset(NeighborSampler): | Model |Test Accuracy |Valid Accuracy | Parameters | Hardware | | ------------------ |-------------- | --------------- | -------------- |----------| | Arxiv_baseline | 0.7225 ± 0.0015 | 0.7367 ± 0.0012 | 468,369 | Tesla V100 (32GB) | -| Arxiv_UniPM | 0.7311 ± 0.0021 | 0.7450 ± 0.0005 | 473,489 | Tesla V100 (32GB) | +| Arxiv_UniMP | 0.7311 ± 0.0021 | 0.7450 ± 0.0005 | 473,489 | Tesla V100 (32GB) | | Products_baseline | 0.8023 ± 0.0026 | 0.9286 ± 0.0017 | 1,470,905 | Tesla V100 (32GB) | -| Products_UniPM | 0.8256 ± 0.0031 | 0.9308 ± 0.0017 | 1,475,605 | Tesla V100 (32GB) | +| Products_UniMP | 0.8256 ± 0.0031 | 0.9308 ± 0.0017 | 1,475,605 | Tesla V100 (32GB) | | Proteins_baseline | 0.8611 ± 0.0017 | 0.9128 ± 0.0007 | 1,879,664 | Tesla V100 (32GB) | -| Proteins_UniPM | 0.8642 ± 0.0008 | 0.9175 ± 0.0007 | 1,909,104 | Tesla V100 (32GB) | +| Proteins_UniMP | 0.8642 ± 0.0008 | 0.9175 ± 0.0007 | 1,909,104 | Tesla V100 (32GB) |