# Graph Isomorphism Network (GIN)[Graph Isomorphism Network \(GIN\)](https://arxiv.org/pdf/1810.00826.pdf) is a simple graph neural network that expects to achieve the ability as the Weisfeiler-Lehman graph isomorphism test. Based on PGL, we reproduce the GIN model.### DatasetsThe dataset can be downloaded from [here](https://github.com/weihua916/powerful-gnns/blob/master/dataset.zip)### Dependencies- paddlepaddle 1.6- pgl 1.0.2### How to runFor examples, use GPU to train GIN model on MUTAG dataset.```python main.py --use_cuda --dataset_name MUTAG ```### Hyperparameters- data\_path: the root path of your dataset - dataset\_name: the name of the dataset- fold\_idx: The $fold\_idx^{th}$ fold of dataset splited. Here we use 10 fold cross-validation- train\_eps: whether the $\epsilon$ parameter is learnable.### Experiment results (Accuracy)| |MUTAG | COLLAB | IMDBBINARY | IMDBMULTI ||--|-------------|----------|------------|-----------------||PGL result | 90.8 | 78.6 | 76.8 | 50.8 ||paper reuslt |90.0 | 80.0 | 75.1 | 52.3 |