main_product.py 13.0 KB
Newer Older
S
unipm  
sys1874 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
import math
import torch
import paddle
import pgl
import numpy as np
import paddle.fluid as F
import paddle.fluid.layers as L
import copy
from pgl.contrib.ogb.nodeproppred.dataset_pgl import PglNodePropPredDataset
from ogb.nodeproppred import Evaluator

from utils import to_undirected, add_self_loop, linear_warmup_decay
from model import Products_label_embedding_model
from dataloader.ogb_products_dataloader import SampleDataGenerator
import paddle.fluid.profiler as profiler
from pgl.utils import paddle_helper

import argparse
from tqdm import tqdm
evaluator = Evaluator(name='ogbn-products')

def get_config():
    parser = argparse.ArgumentParser()
    
S
sys1874 已提交
25
    ## data_sampling_arg
S
unipm  
sys1874 已提交
26 27 28 29 30 31
    data_group= parser.add_argument_group('data_arg')
    data_group.add_argument('--batch_size', default=1500, type=int)
    data_group.add_argument('--num_workers', default=12, type=int)
    data_group.add_argument('--sizes', default=[10, 10, 10], type=int, nargs='+' )
    data_group.add_argument('--buf_size', default=1000, type=int)

S
sys1874 已提交
32
    ## model_arg
S
unipm  
sys1874 已提交
33 34 35 36 37 38 39
    model_group=parser.add_argument_group('model_base_arg')
    model_group.add_argument('--num_layers', default=3, type=int)
    model_group.add_argument('--hidden_size', default=128, type=int)
    model_group.add_argument('--num_heads', default=4, type=int)
    model_group.add_argument('--dropout', default=0.3, type=float)
    model_group.add_argument('--attn_dropout', default=0, type=float)
    
S
sys1874 已提交
40
    ## label_embed_arg
S
unipm  
sys1874 已提交
41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115
    embed_group=parser.add_argument_group('embed_arg')
    embed_group.add_argument('--use_label_e', action='store_true')
    embed_group.add_argument('--label_rate', default=0.625, type=float)
    
    ## train_arg
    train_group=parser.add_argument_group('train_arg')
    train_group.add_argument('--runs', default=10, type=int )
    train_group.add_argument('--epochs', default=100, type=int )
    train_group.add_argument('--lr', default=0.001, type=float)
    train_group.add_argument('--place', default=-1, type=int)
    train_group.add_argument('--log_file', default='result_products.txt', type=str)
    return parser.parse_args()


def optimizer_func(lr):
    return F.optimizer.AdamOptimizer(learning_rate=lr)


def eval_test(parser, test_p_list, model, test_exe, dataset, split_idx):
    
    eval_gg=SampleDataGenerator(graph_wrappers=[model.gw_list[0]], buf_size=parser.buf_size,
                                 batch_size=parser.batch_size , num_workers=1,
                                 sizes=[-1,], shuffle=False,
                                  dataset=dataset,
                                  nodes_idx=None)
    
    out_r_temp=[]
    test_p, out=test_p_list[0]
    
    pbar = tqdm(total=eval_gg.num_nodes* model.num_layers)
    pbar.set_description('Evaluating')
    
    for feed_batch in tqdm(eval_gg.generator()):
        feed_batch['label_idx']=split_idx['train']
        feat_batch= test_exe.run(test_p,
                              feed=feed_batch,
                              fetch_list=out)
        out_r_temp.append(feat_batch[0])
        pbar.update(feed_batch['label'].shape[0])
        
    our_r=np.concatenate(out_r_temp, axis=0)
     
    for test_p, out in test_p_list[1:]: #np.concatenate
        out_r_temp=[]
        for feed_batch in tqdm(eval_gg.generator()):

            feed_batch['hidden_node_feat'] = our_r[feed_batch['batch_nodes_0']]
            feat_batch= test_exe.run(test_p,
                                  feed=feed_batch,
                                  fetch_list=out)
            out_r_temp.append(feat_batch[0])
            pbar.update(feed_batch['label'].shape[0])
        our_r=np.concatenate(out_r_temp, axis=0)
    pbar.close()

    y_pred=our_r.argmax(axis=-1)
    y_pred=np.expand_dims(y_pred, 1)
    y_true=eval_gg.labels
    train_acc = evaluator.eval({
        'y_true': y_true[split_idx['train']],
        'y_pred': y_pred[split_idx['train']],
    })['acc']
    val_acc = evaluator.eval({
        'y_true': y_true[split_idx['valid']],
        'y_pred': y_pred[split_idx['valid']],
    })['acc']
    test_acc = evaluator.eval({
        'y_true': y_true[split_idx['test']],
        'y_pred': y_pred[split_idx['test']],
    })['acc']

    return train_acc, val_acc, test_acc

def train_loop(parser, start_program, main_program, test_p_list,
               model, feat_init, place, dataset, split_idx, exe, run_id, wf=None):
S
sys1874 已提交
116
    #build up training program
S
unipm  
sys1874 已提交
117 118 119 120 121 122 123 124
    exe.run(start_program)
    feat_init(place)
    
    max_acc=0  # 最佳test_acc
    max_step=0 # 最佳test_acc 对应step
    max_val_acc=0 # 最佳val_acc
    max_cor_acc=0 # 最佳val_acc对应test_acc
    max_cor_step=0 # 最佳val_acc对应step
S
sys1874 已提交
125
    #training loop
S
unipm  
sys1874 已提交
126 127

    for epoch_id in range(parser.epochs):
S
sys1874 已提交
128
        #start training  
S
unipm  
sys1874 已提交
129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160
         
        if parser.use_label_e:
            train_idx_temp=copy.deepcopy(split_idx['train'])
            np.random.shuffle(train_idx_temp)
            label_idx=train_idx_temp[ :int(parser.label_rate*len(train_idx_temp))]
            unlabel_idx=train_idx_temp[int(parser.label_rate*len(train_idx_temp)):]
            train_gg=SampleDataGenerator(graph_wrappers=model.gw_list, buf_size=parser.buf_size,
                                 batch_size=parser.batch_size , num_workers=parser.num_workers,
                                 sizes=parser.sizes, shuffle=True,
                                  dataset=dataset,
                                  nodes_idx=unlabel_idx)
            pbar = tqdm(total=unlabel_idx.shape[0])
            pbar.set_description(f'Epoch {epoch_id:02d}')

            total=0.0
            acc_num=0.0
            for batch_feed in tqdm(train_gg.generator()):    

                batch_feed['label_idx']=label_idx
                loss = exe.run(main_program,
                          feed=batch_feed,
                          fetch_list=[model.avg_cost, model.out_feat])
                total+=loss[0][0]
                
                
                acc_num=(loss[1].argmax(axis=-1)==batch_feed['label'].reshape(-1)).sum()+acc_num
                pbar.update(batch_feed['label'].shape[0])
            pbar.close()
            print(total/(len(train_gg)/parser.batch_size))  

            print('acc: ', (acc_num/unlabel_idx.shape[0])*100)

S
sys1874 已提交
161
        #eval result
S
unipm  
sys1874 已提交
162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243
        if (epoch_id+1)>=50 and (epoch_id+1)%10==0:
            result = eval_test(parser, test_p_list, model, exe, dataset, split_idx)
            train_acc, valid_acc, test_acc = result

            max_acc = max(test_acc, max_acc)
            if max_acc == test_acc:
                max_step=epoch_id
            max_val_acc=max(valid_acc, max_val_acc)
            if max_val_acc==valid_acc:
                max_cor_acc=test_acc
                max_cor_step=epoch_id
            max_acc=max(result[2], max_acc)
            if max_acc==result[2]:
                max_step=epoch_id
            result_t=(f'Run: {run_id:02d}, '
                      f'Epoch: {epoch_id:02d}, '
                      f'Loss: {total:.4f}, '
                      f'Train: {100 * train_acc:.2f}%, '
                      f'Valid: {100 * valid_acc:.2f}%, '
                      f'Test: {100 * test_acc:.2f}% \n'
                      f'max_Test: {100 * max_acc:.2f}%, '
                      f'max_step: {max_step}\n'
                      f'max_val: {100 * max_val_acc:.2f}%, '
                      f'max_val_Test: {100 * max_cor_acc:.2f}%, '
                      f'max_val_step: {max_cor_step}\n'
                     )
#         if (epoch_id+1)%50==0:
            print(result_t)
            wf.write(result_t)
            wf.write('\n')
            wf.flush()
    return max_cor_acc





if __name__ == '__main__':
    parser = get_config()
    print('===========args==============')
    print(parser)
    print('=============================')
    
    startup_prog = F.default_startup_program()
    train_prog = F.default_main_program()

    
    place=F.CPUPlace() if parser.place <0 else F.CUDAPlace(parser.place)
    
    dataset = PglNodePropPredDataset(name="ogbn-products")
#     dataset = PglNodePropPredDataset(name="ogbn-arxiv")

    split_idx=dataset.get_idx_split()
    
    graph, label = dataset[0]
    print(label.shape)
    
    with F.program_guard(train_prog, startup_prog):
        with F.unique_name.guard():
            
            gw_list=[]
            
            for i in range(len(parser.sizes)):
                gw_list.append(pgl.graph_wrapper.GraphWrapper(
                    name="product_"+str(i)))

            feature_input, feat_init=paddle_helper.constant(
                    name='node_feat_input',
                    dtype='float32',
                    value=graph.node_feat['feat'])
    
            if parser.use_label_e:
                model=Products_label_embedding_model(feature_input, gw_list, 
                                                     parser.hidden_size, parser.num_heads, 
                                                        parser.dropout, parser.num_layers)
            else:
                model=Arxiv_baseline_model(gw, parser.hidden_size, parser.num_heads, 
                                                 parser.dropout, parser.num_layers)
                
#             test_prog=train_prog.clone(for_test=True)
            model.train_program()
           
S
sys1874 已提交
244
            adam_optimizer = optimizer_func(parser.lr)#optimizer
S
unipm  
sys1874 已提交
245 246 247 248 249 250
            adam_optimizer.minimize(model.avg_cost)
    
    test_p_list=[] 
    
    with F.unique_name.guard():  

S
sys1874 已提交
251
        ## build up eval program
S
unipm  
sys1874 已提交
252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279
        test_p=F.Program()
        with F.program_guard(test_p, ):
            gw_test=pgl.graph_wrapper.GraphWrapper(
                    name="product_"+str(0))

            feature_input, feat_init__=paddle_helper.constant(
                    name='node_feat_input',
                    dtype='float32',
                    value=graph.node_feat['feat'])
            label_feature=model.label_embed_input(model.feature_input)
            feature_batch=model.get_batch_feature(label_feature)  # 把batch_feat打出来

            feature_batch=model.get_gat_layer(0, gw_test, feature_batch, 
                                                 hidden_size=model.hidden_size,
                                             num_heads=model.num_heads, 
                                                  concat=True, 
                                             layer_norm=True, relu=True)
            sub_node_index=F.data(name='sub_node_index_0', shape=[None], 
                                  dtype="int64")
            feature_batch=L.gather(feature_batch, sub_node_index, overwrite=False)
#             test_p=test_p.clone(for_test=True)
            test_p_list.append((test_p, feature_batch))
            
        for i in range(1,model.num_layers-1):
            test_p=F.Program()
            with F.program_guard(test_p, ):
                gw_test=pgl.graph_wrapper.GraphWrapper(
                    name="product_"+str(0))
S
sys1874 已提交
280
#                 feature_batch=model.get_batch_feature(label_feature, test=True) 
S
unipm  
sys1874 已提交
281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320
                feature_batch = F.data( 'hidden_node_feat',
                                    shape=[None, model.num_heads*model.hidden_size],
                                    dtype='float32')   
                feature_batch=model.get_gat_layer(i, gw_test, feature_batch, 
                                                 hidden_size=model.hidden_size,
                                             num_heads=model.num_heads,
                                                  concat=True, 
                                             layer_norm=True, relu=True)
                sub_node_index=F.data(name='sub_node_index_0', shape=[None], 
                                      dtype="int64")
                feature_batch=L.gather(feature_batch, sub_node_index, overwrite=False)    
#                 test_p=test_p.clone(for_test=True)
                test_p_list.append((test_p, feature_batch))
            
        test_p=F.Program()
        with F.program_guard(test_p, ):
            gw_test=pgl.graph_wrapper.GraphWrapper(
                    name="product_"+str(0))
#             feature_batch=model.get_batch_feature(label_feature, test=True)
            feature_batch = F.data( 'hidden_node_feat',
                                    shape=[None, model.num_heads*model.hidden_size ],
                                    dtype='float32')
            feature_batch = model.get_gat_layer(model.num_layers-1, gw_test, feature_batch, 
                                           hidden_size=model.out_size, num_heads=model.num_heads, 
                                             concat=False, layer_norm=False, relu=False, gate=True)
            sub_node_index=F.data(name='sub_node_index_0', shape=[None], 
                                  dtype="int64")
            feature_batch=L.gather(feature_batch, sub_node_index, overwrite=False)
#             test_p=test_p.clone(for_test=True)
            test_p_list.append((test_p, feature_batch))    
    
    
    exe = F.Executor(place)
    
    wf = open(parser.log_file, 'w', encoding='utf-8')
    total_test_acc=0.0
    for run_i in range(parser.runs):
        total_test_acc+=train_loop(parser, startup_prog, train_prog, test_p_list, model, feat_init,
            place, dataset, split_idx, exe, run_i, wf)
    wf.write(f'average: {100 * (total_test_acc/parser.runs):.2f}%')
S
sys1874 已提交
321
    wf.close()