model_unimp_large.py 9.0 KB
Newer Older
S
sys1874 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245
import pgl
import paddle.fluid as F
import paddle.fluid.layers as L
from pgl.utils import paddle_helper
from pgl import message_passing
import math

def graph_transformer(name, gw,
        feature,
        hidden_size,
        num_heads=4,
        attn_drop=False,
        edge_feature=None,
        concat=True,
        skip_feat=True,
        gate=False,
        layer_norm=True, 
        relu=True, 
        is_test=False):
    """Implementation of graph Transformer from UniMP

    This is an implementation of the paper Unified Massage Passing Model for Semi-Supervised Classification
    (https://arxiv.org/abs/2009.03509).

    Args:
        name: Granph Transformer layer names.
        
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)

        feature: A tensor with shape (num_nodes, feature_size).

        hidden_size: The hidden size for graph transformer.

        num_heads: The head number in graph transformer.

        attn_drop: Dropout rate for attention.
        
        edge_feature: A tensor with shape (num_edges, feature_size).
        
        concat: Reshape the output (num_nodes, num_heads, hidden_size) by concat (num_nodes, hidden_size * num_heads) or mean (num_nodes, hidden_size)
        
        skip_feat: Whether use skip connect
        
        gate: Whether add skip_feat and output up with gate weight
        
        layer_norm: Whether use layer_norm for output
        
        relu: Whether use relu activation for output

        is_test: Whether in test phrase.

    Return:
        A tensor with shape (num_nodes, hidden_size * num_heads) or (num_nodes, hidden_size)
    """
    def send_attention(src_feat, dst_feat, edge_feat):
        if edge_feat is None or not edge_feat:
            output = src_feat["k_h"] * dst_feat["q_h"]
            output = L.reduce_sum(output, -1)
            output = output / (hidden_size ** 0.5)
#             alpha = paddle_helper.sequence_softmax(output)
            return {"alpha": output, "v": src_feat["v_h"]}   # batch x h     batch x h x feat
        else:
            edge_feat = edge_feat["edge"]
            edge_feat = L.reshape(edge_feat, [-1, num_heads, hidden_size])
            output = (src_feat["k_h"] + edge_feat) * dst_feat["q_h"]
            output = L.reduce_sum(output, -1)
            output = output / (hidden_size ** 0.5)
#             alpha = paddle_helper.sequence_softmax(output)
            return {"alpha": output, "v": (src_feat["v_h"] + edge_feat)}   # batch x h     batch x h x feat

    class Reduce_attention():
        def __init__(self,):
            self.alpha = None
        def __call__(self, msg):
            alpha = msg["alpha"]  # lod-tensor (batch_size, num_heads)
            if attn_drop:
                old_h = alpha
                dropout = F.data(name='attn_drop', shape=[1], dtype="int64")
                u = L.uniform_random(shape=L.cast(L.shape(alpha)[:1], 'int64'), min=0., max=1.)
                keeped = L.cast(u > dropout, dtype="float32")
                self_attn_mask = L.scale(x=keeped, scale=10000.0, bias=-1.0, bias_after_scale=False)
                n_head_self_attn_mask = L.stack( x=[self_attn_mask] * num_heads, axis=1)
                n_head_self_attn_mask.stop_gradient = True
                alpha = n_head_self_attn_mask+ alpha
                alpha = L.lod_reset(alpha, old_h)

            h = msg["v"]
            alpha = paddle_helper.sequence_softmax(alpha)
            
            self.alpha = alpha
            old_h = h
            h = h * alpha
            h = L.lod_reset(h, old_h)
            h = L.sequence_pool(h, "sum")
            
            if concat:
                h = L.reshape(h, [-1, num_heads * hidden_size])
            else:
                h = L.reduce_mean(h, dim=1)
            return h
    reduce_attention = Reduce_attention()
    
    q = linear(feature, hidden_size * num_heads, name=name + '_q_weight', init_type='gcn')
    k = linear(feature, hidden_size * num_heads, name=name + '_k_weight', init_type='gcn')
    v = linear(feature, hidden_size * num_heads, name=name + '_v_weight', init_type='gcn')
    
    
    reshape_q = L.reshape(q, [-1, num_heads, hidden_size])
    reshape_k = L.reshape(k, [-1, num_heads, hidden_size])
    reshape_v = L.reshape(v, [-1, num_heads, hidden_size])

    msg = gw.send(
        send_attention,
        nfeat_list=[("q_h", reshape_q), ("k_h", reshape_k),
                    ("v_h", reshape_v)],
        efeat_list=edge_feature)
    out_feat = gw.recv(msg, reduce_attention)
    checkpoints=[out_feat]
    
    if skip_feat:
        if concat:

            out_feat, cks = appnp(gw, out_feat, k_hop=1)
#             out_feat, cks = appnp(gw, out_feat, k_hop=3)
            checkpoints.append(out_feat)
    
#             The UniMP-xxlarge will come soon.
#             out_feat, cks = appnp(gw, out_feat, k_hop=6)
#             out_feat, cks = appnp(gw, out_feat, k_hop=9)
#             checkpoints = checkpoints + cks

            
            skip_feature = linear(feature, hidden_size * num_heads, name=name + '_skip_weight', init_type='lin')
        else:
            
            skip_feature = linear(feature, hidden_size, name=name + '_skip_weight', init_type='lin')
            
        if gate:
            temp_output = L.concat([skip_feature, out_feat, out_feat - skip_feature], axis=-1)
            gate_f = L.sigmoid(linear(temp_output, 1, name=name + '_gate_weight', init_type='lin'))
            out_feat = skip_feature * gate_f + out_feat * (1 - gate_f)
        else:
            out_feat = skip_feature + out_feat
            
    if layer_norm:
        lay_norm_attr = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=1))
        lay_norm_bias = F.ParamAttr(initializer=F.initializer.ConstantInitializer(value=0))
        out_feat = L.layer_norm(out_feat, name=name + '_layer_norm', 
                                  param_attr=lay_norm_attr, 
                                  bias_attr=lay_norm_bias)
    if relu:
        out_feat = L.relu(out_feat)
    
    return out_feat, reduce_attention.alpha, checkpoints


def appnp(gw, feature, alpha=0.2, k_hop=10):
    """Implementation of APPNP of "Predict then Propagate: Graph Neural Networks
    meet Personalized PageRank"  (ICLR 2019). 
    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
        feature: A tensor with shape (num_nodes, feature_size).
        edge_dropout: Edge dropout rate.
        k_hop: K Steps for Propagation
    Return:
        A tensor with shape (num_nodes, hidden_size)
    """

    def send_src_copy(src_feat, dst_feat, edge_feat):
        feature = src_feat["h"]
        return feature
    
    def get_norm(indegree):
        float_degree = L.cast(indegree, dtype="float32")
        float_degree = L.clamp(float_degree, min=1.0)
        norm = L.pow(float_degree, factor=-0.5) 
        return norm
    
    cks = []
    h0 = feature
    ngw = gw 
    norm = get_norm(ngw.indegree())
    
    for i in range(k_hop):
            
        feature = feature * norm
        msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
        feature = gw.recv(msg, "sum")
        feature = feature * norm
        feature = feature * (1 - alpha) + h0 * alpha
        
        if (i+1) % 3 == 0:
            cks.append(feature)
    return feature, cks

def attn_appnp(gw, feature, attn, alpha=0.2, k_hop=10):
    """Attention based APPNP to Make model output deeper
    Args:
        gw: Graph wrapper object (:code:`StaticGraphWrapper` or :code:`GraphWrapper`)
        attn: Using the attntion as transition matrix for APPNP
        feature: A tensor with shape (num_nodes, feature_size).
        k_hop: K Steps for Propagation
    Return:
        A tensor with shape (num_nodes, hidden_size)
    """
    def send_src_copy(src_feat, dst_feat, edge_feat):
        feature = src_feat["h"]
        return feature

    h0 = feature
    attn = L.reduce_mean(attn, 1)
    for i in range(k_hop):
        msg = gw.send(send_src_copy, nfeat_list=[("h", feature)])
        msg = msg * attn
        feature = gw.recv(msg, "sum")
        feature = feature * (1 - alpha) + h0 * alpha
    return feature

def linear(input, hidden_size, name, with_bias=True, init_type='gcn'):
    """fluid.layers.fc with different init_type
    """
    
    if init_type == 'gcn':
        fc_w_attr = F.ParamAttr(initializer=F.initializer.XavierInitializer())
        fc_bias_attr = F.ParamAttr(initializer=F.initializer.ConstantInitializer(0.0))
    else:
        fan_in = input.shape[-1]
        bias_bound = 1.0 / math.sqrt(fan_in)
        fc_bias_attr = F.ParamAttr(initializer=F.initializer.UniformInitializer(low=-bias_bound, high=bias_bound))

        negative_slope = math.sqrt(5)
        gain = math.sqrt(2.0 / (1 + negative_slope ** 2))
        std = gain / math.sqrt(fan_in)
        weight_bound = math.sqrt(3.0) * std
        fc_w_attr = F.ParamAttr(initializer=F.initializer.UniformInitializer(low=-weight_bound, high=weight_bound))
    
    if not with_bias:
        fc_bias_attr = False
        
    output = L.fc(input,
        hidden_size,
        param_attr=fc_w_attr,
        name=name,
        bias_attr=fc_bias_attr)
    return output