layers.py 4.9 KB
Newer Older
D
DesmonDay 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as L
import pgl
from pgl.graph_wrapper import GraphWrapper
from pgl.utils.logger import log
from conv import norm_gcn
D
DesmonDay 已提交
23
from pgl.layers.conv import gcn
D
DesmonDay 已提交
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54

def topk_pool(gw, score, graph_id, ratio):
    """Implementation of topk pooling, where k means pooling ratio.
    
    Args:
        gw: Graph wrapper object.

        score: The attention score of all nodes, which is used to select 
               important nodes.

        graph_id: The graphs that the nodes belong to.

        ratio: The pooling ratio of nodes we want to select.

    Return: 
        perm: The index of nodes we choose.

        ratio_length: The selected node numbers of each graph.
    """

    graph_lod = gw.graph_lod
    graph_nodes = gw.num_nodes
    num_graph = gw.num_graph

    num_nodes = L.ones(shape=[graph_nodes], dtype="float32")
    num_nodes = L.lod_reset(num_nodes, graph_lod)
    num_nodes_per_graph = L.sequence_pool(num_nodes, pool_type='sum')
    max_num_nodes = L.reduce_max(num_nodes_per_graph, dim=0) 
    max_num_nodes = L.cast(max_num_nodes, dtype="int32")

    index = L.arange(0, gw.num_nodes, dtype="int64")
D
DesmonDay 已提交
55
    offset = L.gather(graph_lod, graph_id, overwrite=False)
D
DesmonDay 已提交
56
    index = (index - temp) + (graph_id * max_num_nodes)
D
DesmonDay 已提交
57
    index.stop_gradient = True
D
DesmonDay 已提交
58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90
    
    # padding
    dense_score = L.fill_constant(shape=[num_graph * max_num_nodes],
                                  dtype="float32", value=-999999)
    index = L.reshape(index, shape=[-1])
    dense_score = L.scatter(dense_score, index, updates=score)
    num_graph = L.cast(num_graph, dtype="int32")
    dense_score = L.reshape(dense_score, 
                            shape=[num_graph, max_num_nodes])

    # record the sorted index
    _, sort_index = L.argsort(dense_score, axis=-1, descending=True)

    # recover the index range
    graph_lod = graph_lod[:-1]
    graph_lod = L.reshape(graph_lod, shape=[-1, 1])
    graph_lod = L.cast(graph_lod, dtype="int64")
    sort_index = L.elementwise_add(sort_index, graph_lod, axis=-1)
    sort_index = L.reshape(sort_index, shape=[-1, 1])

    # use sequence_slice to choose selected node index
    pad_lod = L.arange(0, (num_graph + 1) * max_num_nodes, step=max_num_nodes, dtype="int32")
    sort_index = L.lod_reset(sort_index, pad_lod)
    ratio_length = L.ceil(num_nodes_per_graph * ratio) 
    ratio_length = L.cast(ratio_length, dtype="int64")
    ratio_length = L.reshape(ratio_length, shape=[-1, 1])
    offset = L.zeros(shape=[num_graph, 1], dtype="int64") 
    choose_index = L.sequence_slice(input=sort_index, offset=offset, length=ratio_length) 

    perm = L.reshape(choose_index, shape=[-1])
    return perm, ratio_length 


D
DesmonDay 已提交
91
def sag_pool(gw, feature, ratio, graph_id, dataset, name, activation=L.tanh):
D
DesmonDay 已提交
92 93 94 95 96 97 98 99 100 101 102 103 104 105
    """Implementation of self-attention graph pooling (SAGPool)

    This is an implementation of the paper SELF-ATTENTION GRAPH POOLING
    (https://arxiv.org/pdf/1904.08082.pdf)

    Args:
        gw: Graph wrapper object.

        feature: A tensor with shape (num_nodes, feature_size).

        ratio: The pooling ratio of nodes we want to select.

        graph_id: The graphs that the nodes belong to. 

D
DesmonDay 已提交
106 107 108 109
        dataset: To differentiate FRANKENSTEIN dataset and other datasets.

        name: The name of SAGPool layer.
        
D
DesmonDay 已提交
110 111 112 113 114 115 116 117 118
        activation: The activation function.

    Return:
        new_feature: A tensor with shape (num_nodes, feature_size), and the unselected
                     nodes' feature is masked by zero.

        ratio_length: The selected node numbers of each graph.

    """
D
DesmonDay 已提交
119 120 121 122 123 124
    if dataset == "FRANKENSTEIN":
        gcn_ = gcn
    else:
        gcn_ = norm_gcn

    score = gcn_(gw=gw,    
D
DesmonDay 已提交
125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141
                feature=feature, 
                hidden_size=1,
                activation=None,
                norm=gw.node_feat["norm"],
                name=name)
    score = L.squeeze(score, axes=[])  
    perm, ratio_length = topk_pool(gw, score, graph_id, ratio) 

    mask = L.zeros_like(score)
    mask = L.cast(mask, dtype="float32")
    updates = L.ones_like(perm)
    updates = L.cast(updates, dtype="float32")
    mask = L.scatter(mask, perm, updates)
    new_feature = L.elementwise_mul(feature, mask, axis=0)
    temp_score = activation(score)
    new_feature = L.elementwise_mul(new_feature, temp_score, axis=0)
    return new_feature, ratio_length