sample.py 10.1 KB
Newer Older
Y
Yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
    This package implement graph sampling algorithm.
"""
import time
import copy

import numpy as np
import pgl
from pgl.utils.logger import log
from pgl import graph_kernel

L
liweibin 已提交
25 26 27 28
__all__ = [
    'graphsage_sample', 'node2vec_sample', 'deepwalk_sample',
    'metapath_randomwalk'
]
Y
Yelrose 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256


def edge_hash(src, dst):
    """edge_hash
    """
    return src * 100000007 + dst


def graphsage_sample(graph, nodes, samples, ignore_edges=[]):
    """Implement of graphsage sample.
    
    Reference paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf.

    Args:
        graph: A pgl graph instance
        nodes: Sample starting from nodes
        samples: A list, number of neighbors in each layer
        ignore_edges: list of edge(src, dst) will be ignored.
    
    Return:
        A list of subgraphs
    """
    start = time.time()
    num_layers = len(samples)
    start_nodes = nodes
    nodes = list(start_nodes)
    eids, edges = [], []
    nodes_set = set(nodes)
    layer_nodes, layer_eids, layer_edges = [], [], []
    ignore_edge_set = set([edge_hash(src, dst) for src, dst in ignore_edges])

    for layer_idx in reversed(range(num_layers)):
        if len(start_nodes) == 0:
            layer_nodes = [nodes] + layer_nodes
            layer_eids = [eids] + layer_eids
            layer_edges = [edges] + layer_edges
            continue
        batch_pred_nodes, batch_pred_eids = graph.sample_predecessor(
            start_nodes, samples[layer_idx], return_eids=True)
        log.debug("sample_predecessor time: %s" % (time.time() - start))
        start = time.time()
        last_nodes_set = nodes_set

        nodes, eids = copy.copy(nodes), copy.copy(eids)
        edges = copy.copy(edges)
        nodes_set, eids_set = set(nodes), set(eids)
        for srcs, dst, pred_eids in zip(batch_pred_nodes, start_nodes,
                                        batch_pred_eids):
            for src, eid in zip(srcs, pred_eids):
                if edge_hash(src, dst) in ignore_edge_set:
                    continue
                if eid not in eids_set:
                    eids.append(eid)
                    edges.append([src, dst])
                    eids_set.add(eid)
                if src not in nodes_set:
                    nodes.append(src)
                    nodes_set.add(src)
        layer_edges = [edges] + layer_edges
        start_nodes = list(nodes_set - last_nodes_set)
        layer_nodes = [nodes] + layer_nodes
        layer_eids = [eids] + layer_eids
        log.debug("flat time: %s" % (time.time() - start))
        start = time.time()
        # Find new nodes

    feed_dict = {}

    subgraphs = []
    for i in range(num_layers):
        subgraphs.append(
            graph.subgraph(
                nodes=layer_nodes[0], eid=layer_eids[i], edges=layer_edges[i]))
        # only for this task
        subgraphs[i].node_feat["index"] = np.array(
            layer_nodes[0], dtype="int64")
    log.debug("subgraph time: %s" % (time.time() - start))

    return subgraphs


def alias_sample(size, alias, events):
    """Implement of alias sample.
    Args:
        size: Output shape.
        alias: The alias table build by `alias_sample_build_table`.
        events: The events table build by `alias_sample_build_table`.
    
    Return:
        samples: The generated random samples.
    """
    rand_num = np.random.uniform(0.0, len(alias), size)
    idx = rand_num.astype("int64")
    uni = rand_num - idx
    flags = (uni >= alias[idx])
    idx[flags] = events[idx][flags]
    return idx


def graph_alias_sample_table(graph, edge_weight_name):
    """Build alias sample table for weighted deepwalk.
    Args:
        graph: The input graph
        edge_weight_name: The name of edge weight in edge_feat.

    Return:
        Alias sample tables for each nodes.
    """
    edge_weight = graph.edge_feat[edge_weight_name]
    _, eids_array = graph.successor(return_eids=True)
    alias_array, events_array = [], []
    for eids in eids_array:
        probs = edge_weight[eids]
        probs /= np.sum(probs)
        alias, events = graph_kernel.alias_sample_build_table(probs)
        alias_array.append(alias), events_array.append(events)
    alias_array, events_array = np.array(alias_array), np.array(events_array)
    return alias_array, events_array


def deepwalk_sample(graph, nodes, max_depth, alias_name=None,
                    events_name=None):
    """Implement of random walk.

    This function get random walks path for given nodes and depth.

    Args:
        nodes: Walk starting from nodes
        max_depth: Max walking depth

    Return:
        A list of walks.
    """
    walk = []
    # init
    for node in nodes:
        walk.append([node])

    cur_walk_ids = np.arange(0, len(nodes))
    cur_nodes = np.array(nodes)
    for l in range(max_depth):
        # select the walks not end
        cur_succs = graph.successor(cur_nodes)
        mask = [len(succ) > 0 for succ in cur_succs]

        if np.any(mask):
            cur_walk_ids = cur_walk_ids[mask]
            cur_nodes = cur_nodes[mask]
            cur_succs = cur_succs[mask]
        else:
            # stop when all nodes have no successor
            break

        if alias_name is not None and events_name is not None:
            sample_index = [
                alias_sample([1], graph.node_feat[alias_name][node],
                             graph.node_feat[events_name][node])[0]
                for node in cur_nodes
            ]
        else:
            outdegree = [len(cur_succ) for cur_succ in cur_succs]
            sample_index = np.floor(
                np.random.rand(cur_succs.shape[0]) * outdegree).astype("int64")

        nxt_cur_nodes = []
        for s, ind, walk_id in zip(cur_succs, sample_index, cur_walk_ids):
            walk[walk_id].append(s[ind])
            nxt_cur_nodes.append(s[ind])
        cur_nodes = np.array(nxt_cur_nodes)
    return walk


def node2vec_sample(graph, nodes, max_depth, p=1.0, q=1.0):
    """Implement of node2vec random walk.

    Reference paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf.

    Args:
        graph: A pgl graph instance
        nodes: Walk starting from nodes
        max_depth: Max walking depth
        p: Return parameter
        q: In-out parameter

    Return:
        A list of walks.
    """
    if p == 1.0 and q == 1.0:
        return deepwalk_sample(graph, nodes, max_depth)

    walk = []
    # init
    for node in nodes:
        walk.append([node])

    cur_walk_ids = np.arange(0, len(nodes))
    cur_nodes = np.array(nodes)
    prev_nodes = np.array([-1] * len(nodes), dtype="int64")
    prev_succs = np.array([[]] * len(nodes), dtype="int64")
    for l in range(max_depth):
        # select the walks not end
        cur_succs = graph.successor(cur_nodes)

        mask = [len(succ) > 0 for succ in cur_succs]
        if np.any(mask):
            cur_walk_ids = cur_walk_ids[mask]
            cur_nodes = cur_nodes[mask]
            prev_nodes = prev_nodes[mask]
            prev_succs = prev_succs[mask]
            cur_succs = cur_succs[mask]
        else:
            # stop when all nodes have no successor
            break
        num_nodes = cur_nodes.shape[0]
        nxt_nodes = np.zeros(num_nodes, dtype="int64")

        for idx, (
                succ, prev_succ, walk_id, prev_node
        ) in enumerate(zip(cur_succs, prev_succs, cur_walk_ids, prev_nodes)):

            sampled_succ = graph_kernel.node2vec_sample(succ, prev_succ,
                                                        prev_node, p, q)
            walk[walk_id].append(sampled_succ)
            nxt_nodes[idx] = sampled_succ

        prev_nodes, prev_succs = cur_nodes, cur_succs
        cur_nodes = nxt_nodes
    return walk
L
liweibin 已提交
257 258


259 260 261 262 263 264
def metapath_randomwalk(graph,
                        start_nodes,
                        metapath,
                        walk_length,
                        alias_name=None,
                        events_name=None):
L
liweibin 已提交
265 266 267 268
    """Implementation of metapath random walk in heterogeneous graph.

    Args:
        graph: instance of pgl heterogeneous graph
269
        start_nodes: start nodes to generate walk
L
liweibin 已提交
270
        metapath: meta path for sample nodes. 
271
            e.g: "c2p-p2a-a2p-p2c"
L
liweibin 已提交
272 273 274
        walk_length: the walk length

    Return:
275
        a list of metapath walks. 
L
liweibin 已提交
276 277
        
    """
278 279 280

    edge_types = metapath.split('-')

L
liweibin 已提交
281
    walk = []
282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297
    for node in start_nodes:
        walk.append([node])

    cur_walk_ids = np.arange(0, len(start_nodes))
    cur_nodes = np.array(start_nodes)
    mp_len = len(edge_types)
    for i in range(0, walk_length - 1):
        g = graph[edge_types[i % mp_len]]

        cur_succs = g.successor(cur_nodes)
        mask = [len(succ) > 0 for succ in cur_succs]

        if np.any(mask):
            cur_walk_ids = cur_walk_ids[mask]
            cur_nodes = cur_nodes[mask]
            cur_succs = cur_succs[mask]
L
liweibin 已提交
298
        else:
299
            # stop when all nodes have no successor
L
liweibin 已提交
300 301
            break

302 303 304 305 306 307
        if alias_name is not None and events_name is not None:
            sample_index = [
                alias_sample([1], g.node_feat[alias_name][node],
                             g.node_feat[events_name][node])[0]
                for node in cur_nodes
            ]
L
liweibin 已提交
308
        else:
309 310 311 312 313 314 315 316 317
            outdegree = [len(cur_succ) for cur_succ in cur_succs]
            sample_index = np.floor(
                np.random.rand(cur_succs.shape[0]) * outdegree).astype("int64")

        nxt_cur_nodes = []
        for s, ind, walk_id in zip(cur_succs, sample_index, cur_walk_ids):
            walk[walk_id].append(s[ind])
            nxt_cur_nodes.append(s[ind])
        cur_nodes = np.array(nxt_cur_nodes)
L
liweibin 已提交
318 319

    return walk