args.py 6.5 KB
Newer Older
W
Webbley 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27
#   Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function
from __future__ import unicode_literals
from __future__ import absolute_import

import os
import time
import argparse

from utils.args import ArgumentGroup

# yapf: disable
parser = argparse.ArgumentParser(__doc__)
W
Webbley 已提交
28
parser.add_argument('--use_cuda', action='store_true')
W
Webbley 已提交
29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104
model_g = ArgumentGroup(parser, "model", "model configuration and paths.")
model_g.add_arg("init_checkpoint",          str,  None,           "Init checkpoint to resume training from.")
model_g.add_arg("init_pretraining_params",  str,  None,
                "Init pre-training params which preforms fine-tuning from. If the "
                 "arg 'init_checkpoint' has been set, this argument wouldn't be valid.")
model_g.add_arg("./save_dir",              str,  "./checkpoints",  "Path to save checkpoints.")
model_g.add_arg("hidden_size",             int,    128,       "hidden size.")


train_g = ArgumentGroup(parser, "training", "training options.")
train_g.add_arg("epoch",             int,    3,       "Number of epoches for fine-tuning.")
train_g.add_arg("learning_rate",     float,  5e-5,    "Learning rate used to train with warmup.")
train_g.add_arg("lr_scheduler",      str,    "linear_warmup_decay",
                "scheduler of learning rate.", choices=['linear_warmup_decay', 'noam_decay'])
train_g.add_arg("weight_decay",      float,  0.01,    "Weight decay rate for L2 regularizer.")
train_g.add_arg("warmup_proportion", float,  0.1,
                "Proportion of training steps to perform linear learning rate warmup for.")
train_g.add_arg("save_steps",        int,    10000,   "The steps interval to save checkpoints.")
train_g.add_arg("validation_steps",  int,    1000,    "The steps interval to evaluate model performance.")
train_g.add_arg("use_dynamic_loss_scaling",    bool,   True,   "Whether to use dynamic loss scaling.")
train_g.add_arg("init_loss_scaling",           float,  102400,
                "Loss scaling factor for mixed precision training, only valid when use_fp16 is enabled.")

train_g.add_arg("test_save",            str,    "./checkpoints/test_result",       "test_save")
train_g.add_arg("metric",               str,    "simple_accuracy",   "metric")
train_g.add_arg("incr_every_n_steps",          int,    100,   "Increases loss scaling every n consecutive.")
train_g.add_arg("decr_every_n_nan_or_inf",     int,    2,
                "Decreases loss scaling every n accumulated steps with nan or inf gradients.")
train_g.add_arg("incr_ratio",                  float,  2.0,
                "The multiplier to use when increasing the loss scaling.")
train_g.add_arg("decr_ratio",                  float,  0.8,
                "The less-than-one-multiplier to use when decreasing.")




log_g = ArgumentGroup(parser,     "logging", "logging related.")
log_g.add_arg("skip_steps",          int,    10,    "The steps interval to print loss.")
log_g.add_arg("verbose",             bool,   False, "Whether to output verbose log.")
log_g.add_arg("log_dir",             str,   './logs/', "Whether to output verbose log.")

data_g = ArgumentGroup(parser, "data", "Data paths, vocab paths and data processing options")
data_g.add_arg("tokenizer",           str, "FullTokenizer",
              "ATTENTION: the INPUT must be splited by Word with blank while using SentencepieceTokenizer or WordsegTokenizer")
data_g.add_arg("train_set",           str,  None,  "Path to training data.")
data_g.add_arg("test_set",            str,  None,  "Path to test data.")
data_g.add_arg("dev_set",             str,  None,  "Path to validation data.")
data_g.add_arg("aug1_type",           str,  "scheme1",  "augment type")
data_g.add_arg("aug2_type",           str,  "scheme1",  "augment type")
data_g.add_arg("batch_size",          int,  32,    "Total examples' number in batch for training. see also --in_tokens.")
data_g.add_arg("predict_batch_size",  int,  None,    "Total examples' number in batch for predict. see also --in_tokens.")
data_g.add_arg("random_seed",         int,  None,     "Random seed.")
data_g.add_arg("buf_size",         int,  1000,     "Random seed.")

run_type_g = ArgumentGroup(parser, "run_type", "running type options.")
run_type_g.add_arg("num_iteration_per_drop_scope", int,    10,    "Iteration intervals to drop scope.")
run_type_g.add_arg("do_train",                     bool,   True,  "Whether to perform training.")
run_type_g.add_arg("do_val",                       bool,   True,  "Whether to perform evaluation on dev data set.")
run_type_g.add_arg("do_test",                      bool,   True,  "Whether to perform evaluation on test data set.")
run_type_g.add_arg("metrics",                      bool,   True,  "Whether to perform evaluation on test data set.")
run_type_g.add_arg("shuffle",                      bool,   True,  "")
run_type_g.add_arg("for_cn",                       bool,   True,  "model train for cn or for other langs.")
run_type_g.add_arg("num_workers",                       int,   1,  "use multiprocess to generate graph")
run_type_g.add_arg("output_dir",                       str,   None,  "path to save model")
run_type_g.add_arg("config",                       str,   None,  "configure yaml file")
run_type_g.add_arg("n",                       str,   None,  "task name")
run_type_g.add_arg("task_name", str,   None,  "task name")
run_type_g.add_arg("pretrain", bool,   False,  "Whether do pretrian")
run_type_g.add_arg("pretrain_name", str,   None,  "pretrain task name")
run_type_g.add_arg("pretrain_config", str,   None,  "pretrain config.yaml file")
run_type_g.add_arg("pretrain_model_step", str,   None,  "pretrain model step")
run_type_g.add_arg("model_type", str,   "BaseLineModel",  "pretrain model step")
run_type_g.add_arg("num_class", int,   1,  "number class")
run_type_g.add_arg("dataset_name", str,   None,  "finetune dataset name")
run_type_g.add_arg("eval_metrics", str,   None,  "evaluate metrics")
run_type_g.add_arg("task_type", str,   None,  "regression or classification")