message_passing.py 5.7 KB
Newer Older
W
weiyue.su 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as L


def copy_send(src_feat, dst_feat, edge_feat):
    """doc"""
    return src_feat["h"]

def weighted_copy_send(src_feat, dst_feat, edge_feat):
    """doc"""
    return src_feat["h"] * edge_feat["weight"]

def mean_recv(feat):
    """doc"""
    return fluid.layers.sequence_pool(feat, pool_type="average")


def sum_recv(feat):
    """doc"""
    return fluid.layers.sequence_pool(feat, pool_type="sum")


def max_recv(feat):
    """doc"""
    return fluid.layers.sequence_pool(feat, pool_type="max")


def lstm_recv(feat):
    """doc"""
    hidden_dim = 128
    forward, _ = fluid.layers.dynamic_lstm(
        input=feat, size=hidden_dim * 4, use_peepholes=False)
    output = fluid.layers.sequence_last_step(forward)
    return output


def graphsage_sum(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(copy_send, nfeat_list=[("h", feature)])
    neigh_feature = gw.recv(msg, sum_recv)
    self_feature = feature
    self_feature = fluid.layers.fc(self_feature,
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l", initializer=initializer,
                                   learning_rate=learning_rate),
                                   )
    neigh_feature = fluid.layers.fc(neigh_feature,
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r", initializer=initializer,
                                   learning_rate=learning_rate),
                                    )
    output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
    output = fluid.layers.l2_normalize(output, axis=1)
    return output


def graphsage_mean(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(copy_send, nfeat_list=[("h", feature)])
    neigh_feature = gw.recv(msg, mean_recv)
    self_feature = feature
    self_feature = fluid.layers.fc(self_feature,
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l", initializer=initializer,
                                   learning_rate=learning_rate),
                                   )
    neigh_feature = fluid.layers.fc(neigh_feature,
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r", initializer=initializer,
                                   learning_rate=learning_rate),
                                    )
    output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
    output = fluid.layers.l2_normalize(output, axis=1)
    return output


def pinsage_mean(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(weighted_copy_send, nfeat_list=[("h", feature)], efeat_list=["weight"])
    neigh_feature = gw.recv(msg, mean_recv)
    self_feature = feature
    self_feature = fluid.layers.fc(self_feature,
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l", initializer=initializer,
                                   learning_rate=learning_rate),
                                   )
    neigh_feature = fluid.layers.fc(neigh_feature,
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r", initializer=initializer,
                                   learning_rate=learning_rate),
                                    )
    output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
    output = fluid.layers.l2_normalize(output, axis=1)
    return output


def pinsage_sum(gw, feature, hidden_size, act, initializer, learning_rate, name):
    """doc"""
    msg = gw.send(weighted_copy_send, nfeat_list=[("h", feature)], efeat_list=["weight"])
    neigh_feature = gw.recv(msg, sum_recv)
    self_feature = feature
    self_feature = fluid.layers.fc(self_feature,
                                   hidden_size,
                                   act=act,
                                   param_attr=fluid.ParamAttr(name=name + "_l", initializer=initializer,
                                   learning_rate=learning_rate),
                                   )
    neigh_feature = fluid.layers.fc(neigh_feature,
                                    hidden_size,
                                    act=act,
                                    param_attr=fluid.ParamAttr(name=name + "_r", initializer=initializer,
                                   learning_rate=learning_rate),
                                    )
    output = fluid.layers.concat([self_feature, neigh_feature], axis=1)
    output = fluid.layers.l2_normalize(output, axis=1)
    return output