transformer_encoder.py 18.2 KB
Newer Older
W
weiyue.su 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518
#   Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from functools import partial
import numpy as np
from contextlib import contextmanager

import paddle.fluid as fluid
import paddle.fluid.layers as L
import paddle.fluid.layers as layers
#import propeller.paddle as propeller
#from propeller import log

#determin this at the begining
to_3d = lambda a: a  # will change later
to_2d = lambda a: a


def multi_head_attention(queries,
                         keys,
                         values,
                         attn_bias,
                         d_key,
                         d_value,
                         d_model,
                         n_head=1,
                         dropout_rate=0.,
                         cache=None,
                         param_initializer=None,
                         name='multi_head_att'):
    """
    Multi-Head Attention. Note that attn_bias is added to the logit before
    computing softmax activiation to mask certain selected positions so that
    they will not considered in attention weights.
    """
    keys = queries if keys is None else keys
    values = keys if values is None else values

    def __compute_qkv(queries, keys, values, n_head, d_key, d_value):
        """
        Add linear projection to queries, keys, and values.
        """
        q = layers.fc(input=queries,
                      size=d_key * n_head,
                      num_flatten_dims=len(queries.shape) - 1,
                      param_attr=fluid.ParamAttr(
                          name=name + '_query_fc.w_0',
                          initializer=param_initializer),
                      bias_attr=name + '_query_fc.b_0')
        k = layers.fc(input=keys,
                      size=d_key * n_head,
                      num_flatten_dims=len(keys.shape) - 1,
                      param_attr=fluid.ParamAttr(
                          name=name + '_key_fc.w_0',
                          initializer=param_initializer),
                      bias_attr=name + '_key_fc.b_0')
        v = layers.fc(input=values,
                      size=d_value * n_head,
                      num_flatten_dims=len(values.shape) - 1,
                      param_attr=fluid.ParamAttr(
                          name=name + '_value_fc.w_0',
                          initializer=param_initializer),
                      bias_attr=name + '_value_fc.b_0')
        return q, k, v

    def __split_heads(x, n_head):
        """
        Reshape the last dimension of inpunt tensor x so that it becomes two
        dimensions and then transpose. Specifically, input a tensor with shape
        [bs, max_sequence_length, n_head * hidden_dim] then output a tensor
        with shape [bs, n_head, max_sequence_length, hidden_dim].
        """
        hidden_size = x.shape[-1]
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        reshaped = layers.reshape(
            x=x, shape=[0, 0, n_head, hidden_size // n_head], inplace=True)

        # permuate the dimensions into:
        # [batch_size, n_head, max_sequence_len, hidden_size_per_head]
        return layers.transpose(x=reshaped, perm=[0, 2, 1, 3])

    def __combine_heads(x):
        """
        Transpose and then reshape the last two dimensions of inpunt tensor x
        so that it becomes one dimension, which is reverse to __split_heads.
        """
        if len(x.shape) == 3: return x
        if len(x.shape) != 4:
            raise ValueError("Input(x) should be a 4-D Tensor.")
        trans_x = layers.transpose(x, perm=[0, 2, 1, 3])
        # The value 0 in shape attr means copying the corresponding dimension
        # size of the input as the output dimension size.
        #trans_x.desc.set_shape((-1, 1, n_head, d_value))
        return layers.reshape(x=trans_x, shape=[0, 0, d_model], inplace=True)

    def scaled_dot_product_attention(q, k, v, attn_bias, d_key, dropout_rate):
        """
        Scaled Dot-Product Attention
        """
        scaled_q = layers.scale(x=q, scale=d_key**-0.5)
        product = layers.matmul(x=scaled_q, y=k, transpose_y=True)
        if attn_bias:
            product += attn_bias
        weights = layers.softmax(product)
        if dropout_rate:
            weights = layers.dropout(
                weights,
                dropout_prob=dropout_rate,
                dropout_implementation="upscale_in_train",
                is_test=False)
        out = layers.matmul(weights, v)
        #return out, product
        return out, weights

    q, k, v = __compute_qkv(queries, keys, values, n_head, d_key, d_value)
    q = to_3d(q)
    k = to_3d(k)
    v = to_3d(v)

    if cache is not None:  # use cache and concat time steps
        # Since the inplace reshape in __split_heads changes the shape of k and
        # v, which is the cache input for next time step, reshape the cache
        # input from the previous time step first.
        k = cache["k"] = layers.concat(
            [layers.reshape(
                cache["k"], shape=[0, 0, d_model]), k], axis=1)
        v = cache["v"] = layers.concat(
            [layers.reshape(
                cache["v"], shape=[0, 0, d_model]), v], axis=1)

    q = __split_heads(q, n_head)
    k = __split_heads(k, n_head)
    v = __split_heads(v, n_head)

    ctx_multiheads, ctx_multiheads_attn = scaled_dot_product_attention(
        q, k, v, attn_bias, d_key, dropout_rate)

    out = __combine_heads(ctx_multiheads)

    out = to_2d(out)

    # Project back to the model size.
    proj_out = layers.fc(input=out,
                         size=d_model,
                         num_flatten_dims=len(out.shape) - 1,
                         param_attr=fluid.ParamAttr(
                             name=name + '_output_fc.w_0',
                             initializer=param_initializer),
                         bias_attr=name + '_output_fc.b_0')
    return proj_out, ctx_multiheads_attn


def positionwise_feed_forward(x,
                              d_inner_hid,
                              d_hid,
                              dropout_rate,
                              hidden_act,
                              param_initializer=None,
                              name='ffn'):
    """
    Position-wise Feed-Forward Networks.
    This module consists of two linear transformations with a ReLU activation
    in between, which is applied to each position separately and identically.
    """
    hidden = layers.fc(input=x,
                       size=d_inner_hid,
                       num_flatten_dims=len(x.shape) - 1,
                       act=hidden_act,
                       param_attr=fluid.ParamAttr(
                           name=name + '_fc_0.w_0',
                           initializer=param_initializer),
                       bias_attr=name + '_fc_0.b_0')
    if dropout_rate:
        hidden = layers.dropout(
            hidden,
            dropout_prob=dropout_rate,
            dropout_implementation="upscale_in_train",
            is_test=False)
    out = layers.fc(input=hidden,
                    size=d_hid,
                    num_flatten_dims=len(hidden.shape) - 1,
                    param_attr=fluid.ParamAttr(
                        name=name + '_fc_1.w_0',
                        initializer=param_initializer),
                    bias_attr=name + '_fc_1.b_0')
    return out


def pre_post_process_layer(prev_out,
                           out,
                           process_cmd,
                           dropout_rate=0.,
                           name=''):
    """
    Add residual connection, layer normalization and droput to the out tensor
    optionally according to the value of process_cmd.
    This will be used before or after multi-head attention and position-wise
    feed-forward networks.
    """
    for cmd in process_cmd:
        if cmd == "a":  # add residual connection
            out = out + prev_out if prev_out else out
        elif cmd == "n":  # add layer normalization
            out_dtype = out.dtype
            if out_dtype == fluid.core.VarDesc.VarType.FP16:
                out = layers.cast(x=out, dtype="float32")
            out = layers.layer_norm(
                out,
                begin_norm_axis=len(out.shape) - 1,
                param_attr=fluid.ParamAttr(
                    name=name + '_layer_norm_scale',
                    initializer=fluid.initializer.Constant(1.)),
                bias_attr=fluid.ParamAttr(
                    name=name + '_layer_norm_bias',
                    initializer=fluid.initializer.Constant(0.)))
            if out_dtype == fluid.core.VarDesc.VarType.FP16:
                out = layers.cast(x=out, dtype="float16")
        elif cmd == "d":  # add dropout
            if dropout_rate:
                out = layers.dropout(
                    out,
                    dropout_prob=dropout_rate,
                    dropout_implementation="upscale_in_train",
                    is_test=False)
    return out


pre_process_layer = partial(pre_post_process_layer, None)
post_process_layer = pre_post_process_layer


def encoder_layer(enc_input,
                  attn_bias,
                  n_head,
                  d_key,
                  d_value,
                  d_model,
                  d_inner_hid,
                  prepostprocess_dropout,
                  attention_dropout,
                  relu_dropout,
                  hidden_act,
                  preprocess_cmd="n",
                  postprocess_cmd="da",
                  param_initializer=None,
                  name=''):
    """The encoder layers that can be stacked to form a deep encoder.
    This module consits of a multi-head (self) attention followed by
    position-wise feed-forward networks and both the two components companied
    with the post_process_layer to add residual connection, layer normalization
    and droput.
    """
    #L.Print(L.reduce_mean(enc_input), message='1')
    attn_output, ctx_multiheads_attn = multi_head_attention(
        pre_process_layer(
            enc_input,
            preprocess_cmd,
            prepostprocess_dropout,
            name=name + '_pre_att'),
        None,
        None,
        attn_bias,
        d_key,
        d_value,
        d_model,
        n_head,
        attention_dropout,
        param_initializer=param_initializer,
        name=name + '_multi_head_att')
    #L.Print(L.reduce_mean(attn_output), message='1')
    attn_output = post_process_layer(
        enc_input,
        attn_output,
        postprocess_cmd,
        prepostprocess_dropout,
        name=name + '_post_att')

    #L.Print(L.reduce_mean(attn_output), message='2')
    ffd_output = positionwise_feed_forward(
        pre_process_layer(
            attn_output,
            preprocess_cmd,
            prepostprocess_dropout,
            name=name + '_pre_ffn'),
        d_inner_hid,
        d_model,
        relu_dropout,
        hidden_act,
        param_initializer=param_initializer,
        name=name + '_ffn')
    #L.Print(L.reduce_mean(ffd_output), message='3')
    ret = post_process_layer(
        attn_output,
        ffd_output,
        postprocess_cmd,
        prepostprocess_dropout,
        name=name + '_post_ffn')
    #L.Print(L.reduce_mean(ret), message='4')
    return ret, ctx_multiheads_attn, ffd_output


def build_pad_idx(input_mask):
    pad_idx = L.where(L.cast(L.squeeze(input_mask, [2]), 'bool'))
    return pad_idx


def build_attn_bias(input_mask, n_head, dtype):
    attn_bias = L.matmul(
        input_mask, input_mask, transpose_y=True)  # [batch, seq, seq]
    attn_bias = (1. - attn_bias) * -10000.
    attn_bias = L.stack([attn_bias] * n_head, 1) # [batch, n_head, seq, seq]
    if attn_bias.dtype != dtype:
        attn_bias = L.cast(attn_bias, dtype)
    return attn_bias


def build_graph_attn_bias(input_mask, n_head, dtype, slot_seqlen):

    input_shape = L.shape(input_mask)
    input_batch = input_shape[0]
    input_seqlen = input_shape[1]
    num_slot = input_seqlen / slot_seqlen
    num_b = num_slot - 1
    ones = L.ones([num_b], dtype="float32") # [num_b]
    diag_ones = L.diag(ones) # [num_b, num_b]
    diag_ones = L.unsqueeze(diag_ones, [1, -1]) # [num_b, 1, num_b, 1]
    diag_ones = L.expand(diag_ones, [1, slot_seqlen, 1, slot_seqlen]) # [num_b, seqlen, num_b, seqlen]
    diag_ones = L.reshape(diag_ones, [1, num_b*slot_seqlen, num_b*slot_seqlen]) # [1, num_b*seqlen, num_b*seqlen]
    
    graph_attn_bias = L.concat([L.ones([1, num_b*slot_seqlen, slot_seqlen], dtype="float32"), diag_ones], 2)
    graph_attn_bias = L.concat([L.ones([1, slot_seqlen, num_slot*slot_seqlen], dtype="float32"), graph_attn_bias], 1) # [1, seq, seq]

    pad_attn_bias = L.matmul(
        input_mask, input_mask, transpose_y=True)  # [batch, seq, seq]
    attn_bias = graph_attn_bias * pad_attn_bias

    attn_bias = (1. - attn_bias) * -10000.
    attn_bias = L.stack([attn_bias] * n_head, 1) # [batch, n_head, seq, seq]
    if attn_bias.dtype != dtype:
        attn_bias = L.cast(attn_bias, dtype)
    return attn_bias


def encoder(enc_input,
            input_mask,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            hidden_act,
            preprocess_cmd="n",
            postprocess_cmd="da",
            param_initializer=None,
            name=''):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """

    #global to_2d, to_3d  #, batch, seqlen, dynamic_dim
    d_shape = L.shape(input_mask)
    pad_idx = build_pad_idx(input_mask)
    attn_bias = build_attn_bias(input_mask, n_head, enc_input.dtype)

    # d_batch = d_shape[0]
    # d_seqlen = d_shape[1]
    # pad_idx = L.where(
    # L.cast(L.reshape(input_mask, [d_batch, d_seqlen]), 'bool'))

    # attn_bias = L.matmul(
    # input_mask, input_mask, transpose_y=True)  # [batch, seq, seq]
    # attn_bias = (1. - attn_bias) * -10000.
    # attn_bias = L.stack([attn_bias] * n_head, 1)
    # if attn_bias.dtype != enc_input.dtype:
    # attn_bias = L.cast(attn_bias, enc_input.dtype)

    # def to_2d(t_3d):
        # t_2d = L.gather_nd(t_3d, pad_idx)
        # return t_2d

    # def to_3d(t_2d):
        # t_3d = L.scatter_nd(
        # pad_idx, t_2d, shape=[d_shape[0], d_shape[1], d_model])
        # return t_3d

    enc_input = to_2d(enc_input)
    all_hidden = []
    all_attn = []
    all_ffn = []
    for i in range(n_layer):
        enc_output, ctx_multiheads_attn, ffn_output = encoder_layer(
            enc_input,
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            hidden_act,
            preprocess_cmd,
            postprocess_cmd,
            param_initializer=param_initializer,
            name=name + '_layer_' + str(i))
        all_hidden.append(enc_output)
        all_attn.append(ctx_multiheads_attn)
        all_ffn.append(ffn_output)
        enc_input = enc_output
    enc_output = pre_process_layer(
        enc_output,
        preprocess_cmd,
        prepostprocess_dropout,
        name="post_encoder")
    enc_output = to_3d(enc_output)
    #enc_output.desc.set_shape((-1, 1, final_dim))
    return enc_output, all_hidden, all_attn, all_ffn

def graph_encoder(enc_input,
            input_mask,
            n_layer,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            hidden_act,
            preprocess_cmd="n",
            postprocess_cmd="da",
            param_initializer=None,
            slot_seqlen=40,
            name=''):
    """
    The encoder is composed of a stack of identical layers returned by calling
    encoder_layer.
    """

    #global to_2d, to_3d  #, batch, seqlen, dynamic_dim
    d_shape = L.shape(input_mask)
    pad_idx = build_pad_idx(input_mask)
    attn_bias = build_graph_attn_bias(input_mask, n_head, enc_input.dtype, slot_seqlen)
    #attn_bias = build_attn_bias(input_mask, n_head, enc_input.dtype)

    # d_batch = d_shape[0]
    # d_seqlen = d_shape[1]
    # pad_idx = L.where(
    # L.cast(L.reshape(input_mask, [d_batch, d_seqlen]), 'bool'))

    # attn_bias = L.matmul(
    # input_mask, input_mask, transpose_y=True)  # [batch, seq, seq]
    # attn_bias = (1. - attn_bias) * -10000.
    # attn_bias = L.stack([attn_bias] * n_head, 1)
    # if attn_bias.dtype != enc_input.dtype:
    # attn_bias = L.cast(attn_bias, enc_input.dtype)

    # def to_2d(t_3d):
        # t_2d = L.gather_nd(t_3d, pad_idx)
        # return t_2d

    # def to_3d(t_2d):
        # t_3d = L.scatter_nd(
        # pad_idx, t_2d, shape=[d_shape[0], d_shape[1], d_model])
        # return t_3d

    enc_input = to_2d(enc_input)
    all_hidden = []
    all_attn = []
    all_ffn = []
    for i in range(n_layer):
        enc_output, ctx_multiheads_attn, ffn_output = encoder_layer(
            enc_input,
            attn_bias,
            n_head,
            d_key,
            d_value,
            d_model,
            d_inner_hid,
            prepostprocess_dropout,
            attention_dropout,
            relu_dropout,
            hidden_act,
            preprocess_cmd,
            postprocess_cmd,
            param_initializer=param_initializer,
            name=name + '_layer_' + str(i))
        all_hidden.append(enc_output)
        all_attn.append(ctx_multiheads_attn)
        all_ffn.append(ffn_output)
        enc_input = enc_output
    enc_output = pre_process_layer(
        enc_output,
        preprocess_cmd,
        prepostprocess_dropout,
        name="post_encoder")
    enc_output = to_3d(enc_output)
    #enc_output.desc.set_shape((-1, 1, final_dim))
    return enc_output, all_hidden, all_attn, all_ffn