graph.py 23.7 KB
Newer Older
Y
yelrose 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""
    This package implement Graph structure for handling graph data.
"""

import numpy as np
import pickle as pkl
import time
import pgl.graph_kernel as graph_kernel

__all__ = ['Graph', 'SubGraph']


def _hide_num_nodes(shape):
    """Set the first dimension as unknown
    """
    shape = list(shape)
    shape[0] = None
    return shape


class EdgeIndex(object):
    """Indexing edges for fast graph queries

    Sorted edges and represent edges in compressed style like csc_matrix or csr_matrix.

    Args:
        u: A list of node id to be compressed.
        v: A list of node id that are connected with u.
        num_nodes: The exactive number of nodes.
    """

    def __init__(self, u, v, num_nodes):
        self._v, self._eid, self._degree, self._sorted_u,\
                self._sorted_v, self._sorted_eid = graph_kernel.build_index(u, v, num_nodes)

    @property
    def degree(self):
        """Return the degree of nodes.
        """
        return self._degree

    @property
    def v(self):
        """Return the compressed v.
        """
        return self._v

    @property
    def eid(self):
        """Return the edge id.
        """
        return self._eid

    def triples(self):
        """Return the sorted (u, v, eid) tuples.
        """
        return self._sorted_u, self._sorted_v, self._sorted_eid


class Graph(object):
    """Implementation of graph structure in pgl.

    This is a simple implementation of graph structure in pgl.

    Args:
        num_nodes: number of nodes in a graph
        edges: list of (u, v) tuples
        node_feat (optional): a dict of numpy array as node features
        edge_feat (optional): a dict of numpy array as edge features (should
                                have consistent order with edges)

    Examples:

        .. code-block:: python

            import numpy as np
            num_nodes = 5
            edges = [ (0, 1), (1, 2), (3, 4)]
            feature = np.random.randn(5, 100)
            edge_feature = np.random.randn(3, 100)
            graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        },
                        edge_feat={
                            "edge_feature": edge_feature
                        })

    """

    def __init__(self, num_nodes, edges=None, node_feat=None, edge_feat=None):
        if node_feat is not None:
            self._node_feat = node_feat
        else:
            self._node_feat = {}

        if edge_feat is not None:
            self._edge_feat = edge_feat
        else:
            self._edge_feat = {}

        if isinstance(edges, np.ndarray):
            if edges.dtype != "int32":
                edges = edges.astype("int32")
        else:
            edges = np.array(edges, dtype="int32")

        self._edges = edges
        self._num_nodes = num_nodes

        if len(edges) == 0:
            # check emtpy edges
            src, dst = np.array([], dtype="int32"), np.array([], dtype="int32")
        else:
            src = edges[:, 0]
            dst = edges[:, 1]

        self._adj_src_index = EdgeIndex(
            u=src, v=dst, num_nodes=self._num_nodes)
        self._adj_dst_index = EdgeIndex(
            u=dst, v=src, num_nodes=self._num_nodes)

    @property
    def edge_feat(self):
        """Return a dictionary of edge features.
        """
        return self._edge_feat

    @property
    def node_feat(self):
        """Return a dictionary of node features.
        """
        return self._node_feat

    @property
    def num_edges(self):
        """Return the number of edges.
        """
        return len(self._edges)

    @property
    def num_nodes(self):
        """Return the number of nodes.
        """
        return self._num_nodes

    @property
    def edges(self):
        """Return all edges in numpy.ndarray with shape (num_edges, 2).
        """
        return self._edges

    def sorted_edges(self, sort_by="src"):
        """Return sorted edges with different strategies.

        This function will return sorted edges with different strategy.
        If :code:`sort_by="src"`, then edges will be sorted by :code:`src`
        nodes and otherwise :code:`dst`.

        Args:
            sort_by: The type for sorted edges. ("src" or "dst")

        Return:
            A tuple of (sorted_src, sorted_dst, sorted_eid).
        """
        if sort_by not in ["src", "dst"]:
            raise ValueError("sort_by should be in 'src' or 'dst'.")
        if sort_by == 'src':
            src, dst, eid = self._adj_src_index.triples()
        else:
            dst, src, eid = self._adj_dst_index.triples()
        return src, dst, eid

    @property
    def nodes(self):
        """Return all nodes id from 0 to :code:`num_nodes - 1`
        """
        return np.arange(self._num_nodes, dtype="int32")

    def indegree(self, nodes=None):
        """Return the indegree of the given nodes

        This function will return indegree of given nodes.

        Args:
            nodes: Return the indegree of given nodes,
                   if nodes is None, return indegree for all nodes

        Return:
            A numpy.ndarray as the given nodes' indegree.
        """
        if nodes is None:
            return self._adj_dst_index.degree
        else:
            return self._adj_dst_index.degree[nodes]

    def outdegree(self, nodes=None):
        """Return the outdegree of the given nodes.

        This function will return outdegree of given nodes.

        Args:
            nodes: Return the outdegree of given nodes,
                   if nodes is None, return outdegree for all nodes

        Return:
            A numpy.array as the given nodes' outdegree.
        """
        if nodes is None:
            return self._adj_src_index.degree
        else:
            return self._adj_src_index.degree[nodes]

    def successor(self, nodes=None, return_eids=False):
        """Find successor of given nodes.

        This function will return the successor of given nodes.

        Args:
            nodes: Return the successor of given nodes,
                   if nodes is None, return successor for all nodes.

            return_eids: If True return nodes together with corresponding eid

        Return:
            Return a list of numpy.ndarray and each numpy.ndarray represent a list
            of successor ids for given nodes. If :code:`return_eids=True`, there will
            be an additional list of numpy.ndarray and each numpy.ndarray represent
            a list of eids that connected nodes to their successors.

        Example:
            .. code-block:: python

                import numpy as np
                num_nodes = 5
                edges = [ (0, 1), (1, 2), (3, 4)]
                graph = Graph(num_nodes=num_nodes,
                        edges=edges)
                succ, succ_eid = graph.successor(return_eids=True)

            This will give output.

            .. code-block:: python

                succ:
                      [[1],
                       [2],
                       [],
                       [4],
                       []]

                succ_eid:
                      [[0],
                       [1],
                       [],
                       [2],
                       []]

        """
        if nodes is None:
            if return_eids:
                return self._adj_src_index.v, self._adj_src_index.eid
            else:
                return self._adj_src_index.v
        else:
            if return_eids:
                return self._adj_src_index.v[nodes], self._adj_src_index.eid[
                    nodes]
            else:
                return self._adj_src_index.v[nodes]

    def sample_successor(self, nodes, max_degree, return_eids=False):
        """Sample successors of given nodes.

        Args:
            nodes: Given nodes whose successors will be sampled.

            max_degree: The max sampled successors for each nodes.

            return_eids: Whether to return the corresponding eids.

        Return:

            Return a list of numpy.ndarray and each numpy.ndarray represent a list
            of sampled successor ids for given nodes. If :code:`return_eids=True`, there will
            be an additional list of numpy.ndarray and each numpy.ndarray represent
            a list of eids that connected nodes to their successors.
        """

        node_succ = self.successor(nodes, return_eids=return_eids)
        if return_eids:
            node_succ, node_succ_eid = node_succ
        if nodes is None:
            nodes = self.nodes

        sample_succ, sample_succ_eid = [], []
        for i in range(len(nodes)):
            max_size = min(max_degree, len(node_succ[i]))
            if max_size == 0:
                sample_succ.append([])
                if return_eids:
                    sample_succ_eid.append([])
            else:
                ind = np.random.choice(
                    len(node_succ[i]), max_size, replace=False)
                sample_succ.append(node_succ[i][ind])
                if return_eids:
                    sample_succ_eid.append(node_succ_eid[i][ind])
        if return_eids:
            return sample_succ, sample_succ_eid
        else:
            return sample_succ

    def predecessor(self, nodes=None, return_eids=False):
        """Find predecessor of given nodes.

        This function will return the predecessor of given nodes.

        Args:
            nodes: Return the predecessor of given nodes,
                   if nodes is None, return predecessor for all nodes.

            return_eids: If True return nodes together with corresponding eid

        Return:
            Return a list of numpy.ndarray and each numpy.ndarray represent a list
            of predecessor ids for given nodes. If :code:`return_eids=True`, there will
            be an additional list of numpy.ndarray and each numpy.ndarray represent
            a list of eids that connected nodes to their predecessors.

        Example:
            .. code-block:: python

                import numpy as np
                num_nodes = 5
                edges = [ (0, 1), (1, 2), (3, 4)]
                graph = Graph(num_nodes=num_nodes,
                        edges=edges)
                pred, pred_eid = graph.predecessor(return_eids=True)

            This will give output.

            .. code-block:: python

                pred:
                      [[],
                       [0],
                       [1],
                       [],
                       [3]]

                pred_eid:
                      [[],
                       [0],
                       [1],
                       [],
                       [2]]

        """
        if nodes is None:
            if return_eids:
                return self._adj_dst_index.v, self._adj_dst_index.eid
            else:
                return self._adj_dst_index.v
        else:
            if return_eids:
                return self._adj_dst_index.v[nodes], self._adj_dst_index.eid[
                    nodes]
            else:
                return self._adj_dst_index.v[nodes]

    def sample_predecessor(self, nodes, max_degree, return_eids=False):
        """Sample predecessor of given nodes.

        Args:
            nodes: Given nodes whose predecessor will be sampled.

            max_degree: The max sampled predecessor for each nodes.

            return_eids: Whether to return the corresponding eids.

        Return:

            Return a list of numpy.ndarray and each numpy.ndarray represent a list
            of sampled predecessor ids for given nodes. If :code:`return_eids=True`, there will
            be an additional list of numpy.ndarray and each numpy.ndarray represent
            a list of eids that connected nodes to their predecessors.
        """
        node_pred = self.predecessor(nodes, return_eids=return_eids)
        if return_eids:
            node_pred, node_pred_eid = node_pred

        if nodes is None:
            nodes = self.nodes

        sample_pred, sample_pred_eid = [], []
        for i in range(len(nodes)):
            max_size = min(max_degree, len(node_pred[i]))
            if max_size == 0:
                sample_pred.append([])
                if return_eids:
                    sample_pred_eid.append([])
            else:
                ind = np.random.choice(
                    len(node_pred[i]), max_size, replace=False)
                sample_pred.append(node_pred[i][ind])
                if return_eids:
                    sample_pred_eid.append(node_pred_eid[i][ind])

        if return_eids:
            return sample_pred, sample_pred_eid
        else:
            return sample_pred

    def node_feat_info(self):
        """Return the information of node feature for GraphWrapper.

        This function return the information of node features. And this
        function is used to help constructing GraphWrapper

        Return:
            A list of tuple (name, shape, dtype) for all given node feature.

        Examples:

            .. code-block:: python

                import numpy as np
                num_nodes = 5
                edges = [ (0, 1), (1, 2), (3, 4)]
                feature = np.random.randn(5, 100)
                graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        node_feat={
                            "feature": feature
                        })
                print(graph.node_feat_info())

            The output will be:

            .. code-block:: python

                [("feature", [None, 100], "float32")]

        """
        node_feat_info = []
        for key, value in self._node_feat.items():
            node_feat_info.append(
                (key, _hide_num_nodes(value.shape), value.dtype))
        return node_feat_info

    def edge_feat_info(self):
        """Return the information of edge feature for GraphWrapper.

        This function return the information of edge features. And this
        function is used to help constructing GraphWrapper

        Return:
            A list of tuple (name, shape, dtype) for all given edge feature.

        Examples:

            .. code-block:: python

                import numpy as np
                num_nodes = 5
                edges = [ (0, 1), (1, 2), (3, 4)]
                feature = np.random.randn(3, 100)
                graph = Graph(num_nodes=num_nodes,
                        edges=edges,
                        edge_feat={
                            "feature": feature
                        })
                print(graph.edge_feat_info())

            The output will be:

            .. code-block:: python

                [("feature", [None, 100], "float32")]

        """
        edge_feat_info = []
        for key, value in self._edge_feat.items():
            edge_feat_info.append(
                (key, _hide_num_nodes(value.shape), value.dtype))
        return edge_feat_info

    def subgraph(self, nodes, eid):
        """Generate subgraph with nodes and edge ids.

        This function will generate a :code:`pgl.graph.Subgraph` object and
        copy all corresponding node and edge features. Nodes and edges will
        be reindex from 0.

        WARNING: ALL NODES IN EID MUST BE INCLUDED BY NODES

        Args:
            nodes: Node ids which will be included in the subgraph.

            eid: Edge ids which will be included in the subgraph.

        Return:
            A :code:`pgl.graph.Subgraph` object.
        """
        reindex = {}

        for ind, node in enumerate(nodes):
            reindex[node] = ind

        eid = np.array(eid, dtype="int32")
        sub_edges = graph_kernel.map_edges(eid, self._edges, reindex)

        sub_edge_feat = {}
        for key, value in self._edge_feat.items():
            sub_edge_feat[key] = value[eid]

        sub_node_feat = {}
        for key, value in self._node_feat.items():
            sub_node_feat[key] = value[nodes]

        subgraph = SubGraph(
            num_nodes=len(nodes),
            edges=sub_edges,
            node_feat=sub_node_feat,
            edge_feat=sub_edge_feat,
            reindex=reindex)
        return subgraph

    def node_batch_iter(self, batch_size, shuffle=True):
        """Node batch iterator

        Iterate all node by batch.

        Args:
            batch_size: The batch size of each batch of nodes.

            shuffle: Whether shuffle the nodes.

        Return:
            Batch iterator
        """
        perm = np.arange(self._num_nodes, dtype="int32")
        if shuffle:
            np.random.shuffle(perm)
        start = 0
        while start < self._num_nodes:
            yield perm[start:start + batch_size]
            start += batch_size

    def sample_nodes(self, sample_num):
        """Sample nodes from the graph

        This function helps to sample nodes from all nodes.
        Nodes might be duplicated.

        Args:
            sample_num: The number of samples

        Return:
            A list of nodes
        """
        return np.random.randint(low=0, high=self._num_nodes, size=sample_num)

    def sample_edges(self, sample_num, replace=False):
        """Sample edges from the graph

        This function helps to sample edges from all edges.

        Args:
            sample_num: The number of samples
            replace: boolean, Whether the sample is with or without replacement.

        Return:
            (u, v), eid 
            each is a numy.array with the same shape.
        """

        sampled_eid = np.random.choice(
            np.arange(self._edges.shape[0]), sample_num, replace=replace)
        return self._edges[sampled_eid], sampled_eid

    def has_edges_between(self, u, v):
        """Check whether some edges is in graph.

        Args:
            u: a numpy.array of src nodes ID.
            v: a numpy.array of dst nodes ID.

        Return:
            exists: A numpy.array of bool, with the same shape with `u` and `v`,
                exists[i] is True if (u[i], v[i]) is a edge in graph, Flase otherwise.
        """
        assert u.shape[0] == v.shape[0], "u and v must have the same shape"
        exists = np.logical_and(u < self.num_nodes, v < self.num_nodes)
        exists_idx = np.arange(u.shape[0])[exists]
        for idx, succ in zip(exists_idx, self.successor(u[exists])):
            exists[idx] = v[idx] in succ
        return exists

    def random_walk(self, nodes, max_depth):
        """Implement of random walk.

        This function get random walks path for given nodes and depth.

        Args:
            nodes: Walk starting from nodes
            max_depth: Max walking depth

        Return:
            A list of walks.
        """
        walk = []
        # init
        for node in nodes:
            walk.append([node])

        cur_walk_ids = np.arange(0, len(nodes))
        cur_nodes = np.array(nodes)
        for l in range(max_depth):
            # select the walks not end
            outdegree = self.outdegree(cur_nodes)
            mask = (outdegree != 0)
            if np.any(mask):
                cur_walk_ids = cur_walk_ids[mask]
                cur_nodes = cur_nodes[mask]
                outdegree = outdegree[mask]
            else:
                # stop when all nodes have no successor
                break
            succ = self.successor(cur_nodes)
            sample_index = np.floor(
                np.random.rand(outdegree.shape[0]) * outdegree).astype("int32")

            nxt_cur_nodes = []
            for s, ind, walk_id in zip(succ, sample_index, cur_walk_ids):
                walk[walk_id].append(s[ind])
                nxt_cur_nodes.append(s[ind])
            cur_nodes = np.array(nxt_cur_nodes)
        return walk

    def node2vec_random_walk(self, nodes, max_depth, p=1.0, q=1.0):
        """Implement of node2vec stype random walk.

        Reference paper: https://cs.stanford.edu/~jure/pubs/node2vec-kdd16.pdf.

        Args:
            nodes: Walk starting from nodes
            max_depth: Max walking depth
            p: Return parameter
            q: In-out parameter

        Return:
            A list of walks.
        """
        if p == 1. and q == 1.:
            return self.random_walk(nodes, max_depth)

        walk = []
        # init
        for node in nodes:
            walk.append([node])

        cur_walk_ids = np.arange(0, len(nodes))
        cur_nodes = np.array(nodes)
        prev_nodes = np.array([-1] * len(nodes), dtype="int32")
        prev_succs = np.array([[]] * len(nodes), dtype="int32")
        for l in range(max_depth):
            # select the walks not end
            outdegree = self.outdegree(cur_nodes)
            mask = (outdegree != 0)
            if np.any(mask):
                cur_walk_ids = cur_walk_ids[mask]
                cur_nodes = cur_nodes[mask]
                prev_nodes = prev_nodes[mask]
                prev_succs = prev_succs[mask]
            else:
                # stop when all nodes have no successor
                break
            cur_succs = self.successor(cur_nodes)
            num_nodes = cur_nodes.shape[0]
            nxt_nodes = np.zeros(num_nodes, dtype="int32")

            for idx, (succ, prev_succ, walk_id, prev_node) in enumerate(
                    zip(cur_succs, prev_succs, cur_walk_ids, prev_nodes)):

                sampled_succ = graph_kernel.node2vec_sample(succ, prev_succ,
                                                            prev_node, p, q)
                walk[walk_id].append(sampled_succ)
                nxt_nodes[idx] = sampled_succ

            prev_nodes, prev_succs = cur_nodes, cur_succs
            cur_nodes = nxt_nodes
        return walk


class SubGraph(Graph):
    """Implementation of SubGraph in pgl.

    Subgraph is inherit from :code:`Graph`. The best way to construct subgraph
    is to use :code:`Graph.subgraph` methods to generate Subgraph object.

    Args:
        num_nodes: number of nodes in a graph
        edges: list of (u, v) tuples
        node_feat (optional): a dict of numpy array as node features
        edge_feat (optional): a dict of numpy array as edge features (should
                                have consistent order with edges)
        reindex: A dictionary that maps parent graph node id to subgraph node id.
    """

    def __init__(self,
                 num_nodes,
                 edges=None,
                 node_feat=None,
                 edge_feat=None,
                 reindex=None):
        super(SubGraph, self).__init__(
            num_nodes=num_nodes,
            edges=edges,
            node_feat=node_feat,
            edge_feat=edge_feat)
        if reindex is None:
            reindex = {}
        self._from_reindex = reindex
        self._to_reindex = {u: v for v, u in reindex.items()}

    def reindex_from_parrent_nodes(self, nodes):
        """Map the given parent graph node id to subgraph id.

        Args:
            nodes: A list of nodes from parent graph.

        Return:
            A list of subgraph ids.
        """
        return graph_kernel.map_nodes(nodes, self._from_reindex)

    def reindex_to_parrent_nodes(self, nodes):
        """Map the given subgraph node id to parent graph id.

        Args:
            nodes: A list of nodes in this subgraph.

        Return:
            A list of node ids in parent graph.
        """
        return graph_kernel.map_nodes(nodes, self._to_reindex)