model.py 4.7 KB
Newer Older
D
DesmonDay 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from random import random
import numpy as np

import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as L
import pgl
from pgl.graph import Graph, MultiGraph
from pgl.graph_wrapper import GraphWrapper
from pgl.utils.logger import log
from layers import sag_pool
from conv import norm_gcn


class GlobalModel(object):
    """Implementation of global pooling architecture with SAGPool.
    """
    def __init__(self, args, dataset):
        self.args = args
        self.dataset = dataset
        self.hidden_size = args.hidden_size
        self.num_classes = args.num_classes
        self.num_features = args.num_features
        self.pooling_ratio = args.pooling_ratio
        self.dropout_ratio = args.dropout_ratio
        self.batch_size = args.batch_size

        graph_data = []
        g, label = self.dataset[0]
        graph_data.append(g)
        g, label = self.dataset[1]
        graph_data.append(g)

        batch_graph = MultiGraph(graph_data)
        indegree = batch_graph.indegree()
        norm = np.zeros_like(indegree, dtype="float32")
        norm[indegree > 0] = np.power(indegree[indegree > 0], -0.5)
        batch_graph.node_feat["norm"] = np.expand_dims(norm, -1)
        graph_data = batch_graph

        self.graph_wrapper = GraphWrapper(
            name="graph",
            node_feat=graph_data.node_feat_info()
            )
        self.labels = L.data(
            "labels",
            shape=[None, self.args.num_classes],
            dtype="int32",
            append_batch_size=False)

        self.labels_1dim = L.data(
          "labels_1dim",
          shape=[None],
          dtype="int32",
          append_batch_size=False)

        self.graph_id = L.data(
          "graph_id",
          shape=[None],
          dtype="int32",
          append_batch_size=False)
        
        self.build_model()

    def build_model(self):
        node_features = self.graph_wrapper.node_feat["feat"]

        output = gcn(gw=self.graph_wrapper, 
                     feature=node_features, 
                     hidden_size=self.hidden_size,
                     activation="relu", 
                     norm=self.graph_wrapper.node_feat["norm"],
                     name="gcn_layer_1")
        output1 = output
        output = gcn(gw=self.graph_wrapper, 
                     feature=output, 
                     hidden_size=self.hidden_size,
                     activation="relu", 
                     norm=self.graph_wrapper.node_feat["norm"],
                     name="gcn_layer_2")
        output2 = output
        output = gcn(gw=self.graph_wrapper, 
                     feature=output, 
                     hidden_size=self.hidden_size,
                     activation="relu", 
                     norm=self.graph_wrapper.node_feat["norm"],
                     name="gcn_layer_3")
        
        output = L.concat(input=[output1, output2, output], axis=-1)

        output, ratio_length = sag_pool(gw=self.graph_wrapper, 
                          feature=output, 
                          ratio=self.pooling_ratio,
                          graph_id=self.graph_id,
                          name="sag_pool_1")
        output = L.lod_reset(output, self.graph_wrapper.graph_lod)
        cat1 = L.sequence_pool(output, "sum")
        ratio_length = L.cast(ratio_length, dtype="float32")
        cat1 = L.elementwise_div(cat1, ratio_length, axis=-1)
        cat2 = L.sequence_pool(output, "max")
        output = L.concat(input=[cat2, cat1], axis=-1)

        output = L.fc(output, size=self.hidden_size, act="relu")
        output = L.dropout(output, dropout_prob=self.dropout_ratio)
        output = L.fc(output, size=self.hidden_size // 2, act="relu")
        output = L.fc(output, size=self.num_classes, act=None,
                      param_attr=fluid.ParamAttr(name="final_fc")) 

        self.labels = L.cast(self.labels, dtype="float32")
        loss = L.sigmoid_cross_entropy_with_logits(x=output, label=self.labels)
        self.loss = L.mean(loss)
        pred = L.sigmoid(output) 
        self.pred = L.argmax(x=pred, axis=-1) 
        correct = L.equal(self.pred, self.labels_1dim)
        correct = L.cast(correct, dtype="int32")
        self.correct = L.reduce_sum(correct)