layers.py 4.7 KB
Newer Older
D
DesmonDay 已提交
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import numpy as np
import paddle
import paddle.fluid as fluid
import paddle.fluid.layers as L
import pgl
from pgl.graph_wrapper import GraphWrapper
from pgl.utils.logger import log
from conv import norm_gcn

def topk_pool(gw, score, graph_id, ratio):
    """Implementation of topk pooling, where k means pooling ratio.
    
    Args:
        gw: Graph wrapper object.

        score: The attention score of all nodes, which is used to select 
               important nodes.

        graph_id: The graphs that the nodes belong to.

        ratio: The pooling ratio of nodes we want to select.

    Return: 
        perm: The index of nodes we choose.

        ratio_length: The selected node numbers of each graph.
    """

    graph_lod = gw.graph_lod
    graph_nodes = gw.num_nodes
    num_graph = gw.num_graph

    num_nodes = L.ones(shape=[graph_nodes], dtype="float32")
    num_nodes = L.lod_reset(num_nodes, graph_lod)
    num_nodes_per_graph = L.sequence_pool(num_nodes, pool_type='sum')
    max_num_nodes = L.reduce_max(num_nodes_per_graph, dim=0) 
    max_num_nodes = L.cast(max_num_nodes, dtype="int32")

    index = L.arange(0, gw.num_nodes, dtype="int64")
    temp = L.gather(graph_lod, graph_id, overwrite=False)
    index = (index - temp) + (graph_id * max_num_nodes)
    
    # padding
    dense_score = L.fill_constant(shape=[num_graph * max_num_nodes],
                                  dtype="float32", value=-999999)
    index = L.reshape(index, shape=[-1])
    dense_score = L.scatter(dense_score, index, updates=score)
    num_graph = L.cast(num_graph, dtype="int32")
    dense_score = L.reshape(dense_score, 
                            shape=[num_graph, max_num_nodes])

    # record the sorted index
    _, sort_index = L.argsort(dense_score, axis=-1, descending=True)

    # recover the index range
    graph_lod = graph_lod[:-1]
    graph_lod = L.reshape(graph_lod, shape=[-1, 1])
    graph_lod = L.cast(graph_lod, dtype="int64")
    sort_index = L.elementwise_add(sort_index, graph_lod, axis=-1)
    sort_index = L.reshape(sort_index, shape=[-1, 1])

    # use sequence_slice to choose selected node index
    pad_lod = L.arange(0, (num_graph + 1) * max_num_nodes, step=max_num_nodes, dtype="int32")
    sort_index = L.lod_reset(sort_index, pad_lod)
    ratio_length = L.ceil(num_nodes_per_graph * ratio) 
    ratio_length = L.cast(ratio_length, dtype="int64")
    ratio_length = L.reshape(ratio_length, shape=[-1, 1])
    offset = L.zeros(shape=[num_graph, 1], dtype="int64") 
    choose_index = L.sequence_slice(input=sort_index, offset=offset, length=ratio_length) 

    perm = L.reshape(choose_index, shape=[-1])
    return perm, ratio_length 


def sag_pool(gw, feature, ratio, graph_id, name, activation=L.tanh):
    """Implementation of self-attention graph pooling (SAGPool)

    This is an implementation of the paper SELF-ATTENTION GRAPH POOLING
    (https://arxiv.org/pdf/1904.08082.pdf)

    Args:
        gw: Graph wrapper object.

        feature: A tensor with shape (num_nodes, feature_size).

        ratio: The pooling ratio of nodes we want to select.

        graph_id: The graphs that the nodes belong to. 
        
        gcn: To use the official gcn or norm gcn.

        activation: The activation function.

    Return:
        new_feature: A tensor with shape (num_nodes, feature_size), and the unselected
                     nodes' feature is masked by zero.

        ratio_length: The selected node numbers of each graph.

    """
    score = norm_gcn(gw=gw,    
                feature=feature, 
                hidden_size=1,
                activation=None,
                norm=gw.node_feat["norm"],
                name=name)
    score = L.squeeze(score, axes=[])  
    perm, ratio_length = topk_pool(gw, score, graph_id, ratio) 

    mask = L.zeros_like(score)
    mask = L.cast(mask, dtype="float32")
    updates = L.ones_like(perm)
    updates = L.cast(updates, dtype="float32")
    mask = L.scatter(mask, perm, updates)
    new_feature = L.elementwise_mul(feature, mask, axis=0)
    temp_score = activation(score)
    new_feature = L.elementwise_mul(new_feature, temp_score, axis=0)
    return new_feature, ratio_length